Abstract

Novel electron trapping materials capable of performing optical parallel Boolean logic operations are described. An application to binary full addition based on a parallel algorithm is discussed, and experimental results are presented.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. G. Feitelson, Optical Computing (MIT Press, Cambridge, MA, 1988).
  2. F. T. S. Yu, S. Jutamulia, D. A. Gregory, “Optical Parallel Logic Gates Using Inexpensive Liquid-Crystal Televisions,” Opt. Lett. 12, 1050–1052 (1987).
    [CrossRef] [PubMed]
  3. See, for example, J. Lindmayer, “Photoluminescent Materials for Outputting Orange Light,” U.S. Patent4,839,092 (1989).
  4. J. Lindmayer, “A New Erasable Optical Memory,” Solid State Technol.135–138 (Aug.1988).
  5. A. D. McAulay, “Logic and Arithmetic with Luminescent Rebroadcasting Devices,” Proc. Soc. Photo-Opt. Instrum. Eng. 936321–326 (1988).
  6. A. Huang, “Parallel Algorithms for Optical Digital Computers,” Proc. Soc. Photo-Opt. Instrum. Eng. 422, 13–17 (1983).

1988 (2)

J. Lindmayer, “A New Erasable Optical Memory,” Solid State Technol.135–138 (Aug.1988).

A. D. McAulay, “Logic and Arithmetic with Luminescent Rebroadcasting Devices,” Proc. Soc. Photo-Opt. Instrum. Eng. 936321–326 (1988).

1987 (1)

1983 (1)

A. Huang, “Parallel Algorithms for Optical Digital Computers,” Proc. Soc. Photo-Opt. Instrum. Eng. 422, 13–17 (1983).

Feitelson, D. G.

D. G. Feitelson, Optical Computing (MIT Press, Cambridge, MA, 1988).

Gregory, D. A.

Huang, A.

A. Huang, “Parallel Algorithms for Optical Digital Computers,” Proc. Soc. Photo-Opt. Instrum. Eng. 422, 13–17 (1983).

Jutamulia, S.

Lindmayer, J.

J. Lindmayer, “A New Erasable Optical Memory,” Solid State Technol.135–138 (Aug.1988).

See, for example, J. Lindmayer, “Photoluminescent Materials for Outputting Orange Light,” U.S. Patent4,839,092 (1989).

McAulay, A. D.

A. D. McAulay, “Logic and Arithmetic with Luminescent Rebroadcasting Devices,” Proc. Soc. Photo-Opt. Instrum. Eng. 936321–326 (1988).

Yu, F. T. S.

Opt. Lett. (1)

Proc. Soc. Photo-Opt. Instrum. Eng. (2)

A. D. McAulay, “Logic and Arithmetic with Luminescent Rebroadcasting Devices,” Proc. Soc. Photo-Opt. Instrum. Eng. 936321–326 (1988).

A. Huang, “Parallel Algorithms for Optical Digital Computers,” Proc. Soc. Photo-Opt. Instrum. Eng. 422, 13–17 (1983).

Solid State Technol. (1)

J. Lindmayer, “A New Erasable Optical Memory,” Solid State Technol.135–138 (Aug.1988).

Other (2)

See, for example, J. Lindmayer, “Photoluminescent Materials for Outputting Orange Light,” U.S. Patent4,839,092 (1989).

D. G. Feitelson, Optical Computing (MIT Press, Cambridge, MA, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic diagram of the electron trapping mechanism. Energy levels between conduction and valence bands are introduced by impurities. First and second dopants generate luminescent and electron trapping centers, respectively.

Fig. 2
Fig. 2

Photograph of a fabricated ET sample of 4-μm thick ET thin film deposited on a 5- × 5-cm2 sapphire substrate.

Fig. 3
Fig. 3

image of the resolution target emitted from ET thin film showing the resolution limit at group 4 element 6 or 28.51 line pairs/mm.

Fig. 4
Fig. 4

Scanning electron microscope picture showing the grain structure of the ET thin film.

Fig. 5
Fig. 5

Image of the resolution target passing through ET thin film showing the resolution limit at group 6 element 3 or 80.6 line pairs/mm.

Fig. 6
Fig. 6

Schematic diagram of the optical architecture for parallel Boolean logic; SLR (spatial light rebroadcaster) is a special purpose ET sample.

Fig. 7
Fig. 7

Experimental results showing sixteen parallel Boolean logic functions performed by two 500-μm thick ET samples.

Fig. 8
Fig. 8

Experimental result showing high density logic operation of A · B ¯. Inputs A and B are vertical and horizontal 250-line pairs/in. Ronchi gratings, respectively.

Fig. 9
Fig. 9

Parallel algorithm for 4-bit full addition.

Fig. 10
Fig. 10

Experimental procedure and results of 4-bit binary addition: (a) input A = 1001, (b) input B = 0101, (c) E = A and B = 0001, (d) D = A xor B = 1100, (e) E′ = shifted-E = 0010, (f) D = 1100, (g) G = D and E′ = 0000, (h) F = D xor E′ = 1110. Final output F = A + B = 1110.

Fig. 11
Fig. 11

Photograph of the experimental setup. Two 200-μm thick ET samples are attached on two sides of a beam splitter.

Tables (1)

Tables Icon

Table I Sixteen Boolean Functions of Two Binary Variables

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

F 0 = 0 , F 1 = A · B , F 2 = A · B ¯ , F 3 = A , F 4 = A ¯ · B , F 5 = B , F 6 = A · B ¯ + A ¯ · B , F 7 = A + B , F 8 = A ¯ · B ¯ F 9 = A · B + A ¯ · B ¯ , F 10 = B ¯ , F 11 = A + B ¯ , F 12 = A ¯ , F 13 = A ¯ + B , F 14 = A ¯ + B ¯ , F 15 = 1 ,
1001 + 0101 _ 1110 .

Metrics