Abstract

The applicability of cubic photorefractive crystals in which the recording can be fixed to holographic interferometric studies of microobjects is outlined. The possibility of observing the temporal behavior of the object by a method combining double exposure and real time interferometry is experimentally demonstrated.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. P. Huignard, J. P. Herriau, “Real-Time Double-Exposure Interferometry with Bi12SiO20 Crystals in Transverse Electrooptic Configuration,” Appl. Opt. 16, 1807–1809 (1977).
    [CrossRef] [PubMed]
  2. J. P. Huignard, J. P. Herriau, T. Valentin, “Time Average Holographic Interferometry with Photoconductive Electrooptic Bi12SiO20 Crystals,” Appl. Opt. 16, 2796–2798 (1977).
    [CrossRef] [PubMed]
  3. J. P. Herriau, J. P. Huignard, “Hologram Fixing Process at Room Temperature in Photorefractive Bi12SiO20 Crystals,” Appl. Phys. Lett. 49, 1140–1142 (1986).
    [CrossRef]
  4. S. Zhivkov, M. Miteva, “Holographic Recording in Photorefractive Crystals with Simultaneous Electron/Hole Transport and Two Active Species,” J. Appl. Phys., v. 68, No. 6 (1990), in press.
  5. R. F. Van Ligten, H. Osterberg, “Holographic Microscopy,” Nature, London 211, 282–283 (1966).
  6. M. B. Rhodes, “Holographic Interferometric Microscopy of Polymer Crystallization,” Appl. Opt. 13, 2263–2267 (1974).
    [CrossRef] [PubMed]
  7. E. N. Lechtzier, “Holographic Microscopy in Measurement Techniques,” Izmer. Tekh. No. 9, 22–25 (1978), in Russian.
  8. J. P. Herriau, J. P. Huignard, A. G. Apostolidis, S. Mallick, “Polarization Properties in Two Wave Mixing with Moving Grating in Photorefractive BSO Crystals. Application to Dynamic Interferometry,” Opt. Commun. 56, 141–144 (1985).
    [CrossRef]
  9. A. A. Kamshilin, S. V. Miridonov, M. G. Miteva, E. V. Mokrushina, Zh. Tekh. Fiz. 59, 113–117 (1989), in Russian.

1989 (1)

A. A. Kamshilin, S. V. Miridonov, M. G. Miteva, E. V. Mokrushina, Zh. Tekh. Fiz. 59, 113–117 (1989), in Russian.

1986 (1)

J. P. Herriau, J. P. Huignard, “Hologram Fixing Process at Room Temperature in Photorefractive Bi12SiO20 Crystals,” Appl. Phys. Lett. 49, 1140–1142 (1986).
[CrossRef]

1985 (1)

J. P. Herriau, J. P. Huignard, A. G. Apostolidis, S. Mallick, “Polarization Properties in Two Wave Mixing with Moving Grating in Photorefractive BSO Crystals. Application to Dynamic Interferometry,” Opt. Commun. 56, 141–144 (1985).
[CrossRef]

1978 (1)

E. N. Lechtzier, “Holographic Microscopy in Measurement Techniques,” Izmer. Tekh. No. 9, 22–25 (1978), in Russian.

1977 (2)

1974 (1)

1966 (1)

R. F. Van Ligten, H. Osterberg, “Holographic Microscopy,” Nature, London 211, 282–283 (1966).

Apostolidis, A. G.

J. P. Herriau, J. P. Huignard, A. G. Apostolidis, S. Mallick, “Polarization Properties in Two Wave Mixing with Moving Grating in Photorefractive BSO Crystals. Application to Dynamic Interferometry,” Opt. Commun. 56, 141–144 (1985).
[CrossRef]

Herriau, J. P.

J. P. Herriau, J. P. Huignard, “Hologram Fixing Process at Room Temperature in Photorefractive Bi12SiO20 Crystals,” Appl. Phys. Lett. 49, 1140–1142 (1986).
[CrossRef]

J. P. Herriau, J. P. Huignard, A. G. Apostolidis, S. Mallick, “Polarization Properties in Two Wave Mixing with Moving Grating in Photorefractive BSO Crystals. Application to Dynamic Interferometry,” Opt. Commun. 56, 141–144 (1985).
[CrossRef]

J. P. Huignard, J. P. Herriau, “Real-Time Double-Exposure Interferometry with Bi12SiO20 Crystals in Transverse Electrooptic Configuration,” Appl. Opt. 16, 1807–1809 (1977).
[CrossRef] [PubMed]

J. P. Huignard, J. P. Herriau, T. Valentin, “Time Average Holographic Interferometry with Photoconductive Electrooptic Bi12SiO20 Crystals,” Appl. Opt. 16, 2796–2798 (1977).
[CrossRef] [PubMed]

Huignard, J. P.

J. P. Herriau, J. P. Huignard, “Hologram Fixing Process at Room Temperature in Photorefractive Bi12SiO20 Crystals,” Appl. Phys. Lett. 49, 1140–1142 (1986).
[CrossRef]

J. P. Herriau, J. P. Huignard, A. G. Apostolidis, S. Mallick, “Polarization Properties in Two Wave Mixing with Moving Grating in Photorefractive BSO Crystals. Application to Dynamic Interferometry,” Opt. Commun. 56, 141–144 (1985).
[CrossRef]

J. P. Huignard, J. P. Herriau, “Real-Time Double-Exposure Interferometry with Bi12SiO20 Crystals in Transverse Electrooptic Configuration,” Appl. Opt. 16, 1807–1809 (1977).
[CrossRef] [PubMed]

J. P. Huignard, J. P. Herriau, T. Valentin, “Time Average Holographic Interferometry with Photoconductive Electrooptic Bi12SiO20 Crystals,” Appl. Opt. 16, 2796–2798 (1977).
[CrossRef] [PubMed]

Kamshilin, A. A.

A. A. Kamshilin, S. V. Miridonov, M. G. Miteva, E. V. Mokrushina, Zh. Tekh. Fiz. 59, 113–117 (1989), in Russian.

Lechtzier, E. N.

E. N. Lechtzier, “Holographic Microscopy in Measurement Techniques,” Izmer. Tekh. No. 9, 22–25 (1978), in Russian.

Mallick, S.

J. P. Herriau, J. P. Huignard, A. G. Apostolidis, S. Mallick, “Polarization Properties in Two Wave Mixing with Moving Grating in Photorefractive BSO Crystals. Application to Dynamic Interferometry,” Opt. Commun. 56, 141–144 (1985).
[CrossRef]

Miridonov, S. V.

A. A. Kamshilin, S. V. Miridonov, M. G. Miteva, E. V. Mokrushina, Zh. Tekh. Fiz. 59, 113–117 (1989), in Russian.

Miteva, M.

S. Zhivkov, M. Miteva, “Holographic Recording in Photorefractive Crystals with Simultaneous Electron/Hole Transport and Two Active Species,” J. Appl. Phys., v. 68, No. 6 (1990), in press.

Miteva, M. G.

A. A. Kamshilin, S. V. Miridonov, M. G. Miteva, E. V. Mokrushina, Zh. Tekh. Fiz. 59, 113–117 (1989), in Russian.

Mokrushina, E. V.

A. A. Kamshilin, S. V. Miridonov, M. G. Miteva, E. V. Mokrushina, Zh. Tekh. Fiz. 59, 113–117 (1989), in Russian.

Osterberg, H.

R. F. Van Ligten, H. Osterberg, “Holographic Microscopy,” Nature, London 211, 282–283 (1966).

Rhodes, M. B.

Valentin, T.

Van Ligten, R. F.

R. F. Van Ligten, H. Osterberg, “Holographic Microscopy,” Nature, London 211, 282–283 (1966).

Zhivkov, S.

S. Zhivkov, M. Miteva, “Holographic Recording in Photorefractive Crystals with Simultaneous Electron/Hole Transport and Two Active Species,” J. Appl. Phys., v. 68, No. 6 (1990), in press.

Appl. Opt. (3)

Appl. Phys. Lett. (1)

J. P. Herriau, J. P. Huignard, “Hologram Fixing Process at Room Temperature in Photorefractive Bi12SiO20 Crystals,” Appl. Phys. Lett. 49, 1140–1142 (1986).
[CrossRef]

Izmer. Tekh. (1)

E. N. Lechtzier, “Holographic Microscopy in Measurement Techniques,” Izmer. Tekh. No. 9, 22–25 (1978), in Russian.

Nature, London (1)

R. F. Van Ligten, H. Osterberg, “Holographic Microscopy,” Nature, London 211, 282–283 (1966).

Opt. Commun. (1)

J. P. Herriau, J. P. Huignard, A. G. Apostolidis, S. Mallick, “Polarization Properties in Two Wave Mixing with Moving Grating in Photorefractive BSO Crystals. Application to Dynamic Interferometry,” Opt. Commun. 56, 141–144 (1985).
[CrossRef]

Zh. Tekh. Fiz. (1)

A. A. Kamshilin, S. V. Miridonov, M. G. Miteva, E. V. Mokrushina, Zh. Tekh. Fiz. 59, 113–117 (1989), in Russian.

Other (1)

S. Zhivkov, M. Miteva, “Holographic Recording in Photorefractive Crystals with Simultaneous Electron/Hole Transport and Two Active Species,” J. Appl. Phys., v. 68, No. 6 (1990), in press.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Optical configuration of a holographic interferometric microscope with preliminary magnification.

Fig. 2
Fig. 2

Time dependence of the diffracted beam intensity at double exposure interferometry with photorefractive crystals with one type of charge carrier: I, first exposure and II, second exposure.

Fig. 3
Fig. 3

Holographic interferometry with cubic photorefractive crystals in which fixing of the recording is possible: a, recording a hologram of the initial state of the object; b, fixing; c, simultaneous readout of the initial state hologram (solid line) and recording a hologram of the next state (dashed line).

Fig. 4
Fig. 4

Orthogonal recording geometry with K ‖ [010].

Fig. 5
Fig. 5

Interferograms made with a HIM reflecting different moments after the beginning of the thermal evaporation of a drop of 15% solution of Na2SO4: (a) 1 min; (b) 10 min; (c) 20 min; (d) 25 min.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

δ ɛ ~ ( 0 0 1 0 0 1 1 1 0 ) .

Metrics