Abstract

The dependence of the optical attenuation on the fiber coating has been measured for a sensor fiber subjected to periodic microbending. The dependence on the spectral characteristics of the selected light sources is also addressed and the proper source/coating combination is discussed. Results indicate that the proper selection of this combination is of crucial importance in the design, development, and performance of fiber optic sensors in which intensity modulated microbending transducers are considered. A combination of a short wavelength for the light source and a fiber coated with a hard, elastomeric material seems to be the optimal selection for enhancing the sensitivity in controlled microbending experiments with applications to fiber optic sensors. The highest sensitivity to microbending was obtained for a nylon coated fiber and using a He–Ne laser at 632.8 nm.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. C. P. Bouten, D. J. Broer, C. M. G. Jochem, T. P. M. Meeuwsen, H. J. M. Timmermans, “Doubly Coated Optical Fibers with a Low Sensitivity to Temperature and Microbending,” IEEE/OSA J. Lightwave Technol. LT-7, 680–686 (1989).
    [CrossRef]
  2. G. Kar, K. E. Lu, R. V. VanDewoestine, “Hermetically Coated Optical Fibers,” Corning Tech. Rep. 65 (March1987).
  3. D. J. Broer, G. N. Mol, “Fast Curing Primary Buffer Coatings for High Strength Optical Fibers,” IEEE/OSA J. Lightwave Technol. LT-4, 938–941 (1986).
    [CrossRef]
  4. L. T. Wood, F. Romero-Borja, “Optical Attenuation by Periodic Microdistortions of a Sensor Fiber,” Opt. Lett. 10, 632–634 (1985).
    [CrossRef] [PubMed]
  5. See e.g., M. Shadaram, “Sensing with Fibers,” Photonics Spectra 6, 117–118 (1989); R. H. Mueller, T. S. Wasilenko, W. Scott Brothers, J. M. Fulton, “Sorting Out the Roles of High- and Low-loss Fibers,” Photonics Spectra 21(6), 69–76 (1987).
  6. Modern Plastics Encyclopedia 1986–87, (McGraw-Hill, New York, 1986), MOPLAY 63(10A), pp. 1–886.
  7. S. D. Wohlstein, “Using Fiber Optics for Practical Sensing,” Lasers & Optronics 8(7), 73–76 (1989).
  8. C. Hentschel, Fiber Optics Handbook (Hewlett-Packard GmbH, FRG, 1988), See “Fiber Coating” and “Mode Stripping of Cladding Modes.”
  9. Eric Bear (Ed.), Engineering Design for Plastics (Reinhold, New York, 1964), see also Ref. 6.
  10. P. E. Wierenga, D. J. Broer, J. H. M. v. d. Linden, “Mechanical Characterization of Optical-Fiber coatings by Ultramicroindentation Measurements,” Appl. Opt. 24, 960–963 (1985); see also “Discussion” in Ref. 1.
    [CrossRef]
  11. S. F. Pellicori, “Optical Bonding Agents for Severe Environments,” Appl. Opt. 9, 2581–2582 (1970); see also W. L. Wolfe, “Properties of Optical Materials,” Handbook of Optics, W. G. Driscoll, Ed. (McGraw-Hill, New York, 1978).
    [CrossRef] [PubMed]
  12. L. T. Wood, F. Romero-Borja, R. Hage, “Effects of Radially Induced Periodic Stresses on the Optical Transmission in a Sensor Fiber,” to be submitted for publication to Appl. Opt.

1989 (3)

P. C. P. Bouten, D. J. Broer, C. M. G. Jochem, T. P. M. Meeuwsen, H. J. M. Timmermans, “Doubly Coated Optical Fibers with a Low Sensitivity to Temperature and Microbending,” IEEE/OSA J. Lightwave Technol. LT-7, 680–686 (1989).
[CrossRef]

See e.g., M. Shadaram, “Sensing with Fibers,” Photonics Spectra 6, 117–118 (1989); R. H. Mueller, T. S. Wasilenko, W. Scott Brothers, J. M. Fulton, “Sorting Out the Roles of High- and Low-loss Fibers,” Photonics Spectra 21(6), 69–76 (1987).

S. D. Wohlstein, “Using Fiber Optics for Practical Sensing,” Lasers & Optronics 8(7), 73–76 (1989).

1987 (1)

G. Kar, K. E. Lu, R. V. VanDewoestine, “Hermetically Coated Optical Fibers,” Corning Tech. Rep. 65 (March1987).

1986 (1)

D. J. Broer, G. N. Mol, “Fast Curing Primary Buffer Coatings for High Strength Optical Fibers,” IEEE/OSA J. Lightwave Technol. LT-4, 938–941 (1986).
[CrossRef]

1985 (2)

1970 (1)

Bouten, P. C. P.

P. C. P. Bouten, D. J. Broer, C. M. G. Jochem, T. P. M. Meeuwsen, H. J. M. Timmermans, “Doubly Coated Optical Fibers with a Low Sensitivity to Temperature and Microbending,” IEEE/OSA J. Lightwave Technol. LT-7, 680–686 (1989).
[CrossRef]

Broer, D. J.

P. C. P. Bouten, D. J. Broer, C. M. G. Jochem, T. P. M. Meeuwsen, H. J. M. Timmermans, “Doubly Coated Optical Fibers with a Low Sensitivity to Temperature and Microbending,” IEEE/OSA J. Lightwave Technol. LT-7, 680–686 (1989).
[CrossRef]

D. J. Broer, G. N. Mol, “Fast Curing Primary Buffer Coatings for High Strength Optical Fibers,” IEEE/OSA J. Lightwave Technol. LT-4, 938–941 (1986).
[CrossRef]

P. E. Wierenga, D. J. Broer, J. H. M. v. d. Linden, “Mechanical Characterization of Optical-Fiber coatings by Ultramicroindentation Measurements,” Appl. Opt. 24, 960–963 (1985); see also “Discussion” in Ref. 1.
[CrossRef]

Hage, R.

L. T. Wood, F. Romero-Borja, R. Hage, “Effects of Radially Induced Periodic Stresses on the Optical Transmission in a Sensor Fiber,” to be submitted for publication to Appl. Opt.

Hentschel, C.

C. Hentschel, Fiber Optics Handbook (Hewlett-Packard GmbH, FRG, 1988), See “Fiber Coating” and “Mode Stripping of Cladding Modes.”

Jochem, C. M. G.

P. C. P. Bouten, D. J. Broer, C. M. G. Jochem, T. P. M. Meeuwsen, H. J. M. Timmermans, “Doubly Coated Optical Fibers with a Low Sensitivity to Temperature and Microbending,” IEEE/OSA J. Lightwave Technol. LT-7, 680–686 (1989).
[CrossRef]

Kar, G.

G. Kar, K. E. Lu, R. V. VanDewoestine, “Hermetically Coated Optical Fibers,” Corning Tech. Rep. 65 (March1987).

Linden, J. H. M. v. d.

Lu, K. E.

G. Kar, K. E. Lu, R. V. VanDewoestine, “Hermetically Coated Optical Fibers,” Corning Tech. Rep. 65 (March1987).

Meeuwsen, T. P. M.

P. C. P. Bouten, D. J. Broer, C. M. G. Jochem, T. P. M. Meeuwsen, H. J. M. Timmermans, “Doubly Coated Optical Fibers with a Low Sensitivity to Temperature and Microbending,” IEEE/OSA J. Lightwave Technol. LT-7, 680–686 (1989).
[CrossRef]

Mol, G. N.

D. J. Broer, G. N. Mol, “Fast Curing Primary Buffer Coatings for High Strength Optical Fibers,” IEEE/OSA J. Lightwave Technol. LT-4, 938–941 (1986).
[CrossRef]

Pellicori, S. F.

Romero-Borja, F.

L. T. Wood, F. Romero-Borja, “Optical Attenuation by Periodic Microdistortions of a Sensor Fiber,” Opt. Lett. 10, 632–634 (1985).
[CrossRef] [PubMed]

L. T. Wood, F. Romero-Borja, R. Hage, “Effects of Radially Induced Periodic Stresses on the Optical Transmission in a Sensor Fiber,” to be submitted for publication to Appl. Opt.

Shadaram, M.

See e.g., M. Shadaram, “Sensing with Fibers,” Photonics Spectra 6, 117–118 (1989); R. H. Mueller, T. S. Wasilenko, W. Scott Brothers, J. M. Fulton, “Sorting Out the Roles of High- and Low-loss Fibers,” Photonics Spectra 21(6), 69–76 (1987).

Timmermans, H. J. M.

P. C. P. Bouten, D. J. Broer, C. M. G. Jochem, T. P. M. Meeuwsen, H. J. M. Timmermans, “Doubly Coated Optical Fibers with a Low Sensitivity to Temperature and Microbending,” IEEE/OSA J. Lightwave Technol. LT-7, 680–686 (1989).
[CrossRef]

VanDewoestine, R. V.

G. Kar, K. E. Lu, R. V. VanDewoestine, “Hermetically Coated Optical Fibers,” Corning Tech. Rep. 65 (March1987).

Wierenga, P. E.

Wohlstein, S. D.

S. D. Wohlstein, “Using Fiber Optics for Practical Sensing,” Lasers & Optronics 8(7), 73–76 (1989).

Wood, L. T.

L. T. Wood, F. Romero-Borja, “Optical Attenuation by Periodic Microdistortions of a Sensor Fiber,” Opt. Lett. 10, 632–634 (1985).
[CrossRef] [PubMed]

L. T. Wood, F. Romero-Borja, R. Hage, “Effects of Radially Induced Periodic Stresses on the Optical Transmission in a Sensor Fiber,” to be submitted for publication to Appl. Opt.

Appl. Opt. (2)

Corning Tech. Rep. (1)

G. Kar, K. E. Lu, R. V. VanDewoestine, “Hermetically Coated Optical Fibers,” Corning Tech. Rep. 65 (March1987).

IEEE/OSA J. Lightwave Technol. (2)

D. J. Broer, G. N. Mol, “Fast Curing Primary Buffer Coatings for High Strength Optical Fibers,” IEEE/OSA J. Lightwave Technol. LT-4, 938–941 (1986).
[CrossRef]

P. C. P. Bouten, D. J. Broer, C. M. G. Jochem, T. P. M. Meeuwsen, H. J. M. Timmermans, “Doubly Coated Optical Fibers with a Low Sensitivity to Temperature and Microbending,” IEEE/OSA J. Lightwave Technol. LT-7, 680–686 (1989).
[CrossRef]

Lasers & Optronics (1)

S. D. Wohlstein, “Using Fiber Optics for Practical Sensing,” Lasers & Optronics 8(7), 73–76 (1989).

Opt. Lett. (1)

Photonics Spectra (1)

See e.g., M. Shadaram, “Sensing with Fibers,” Photonics Spectra 6, 117–118 (1989); R. H. Mueller, T. S. Wasilenko, W. Scott Brothers, J. M. Fulton, “Sorting Out the Roles of High- and Low-loss Fibers,” Photonics Spectra 21(6), 69–76 (1987).

Other (4)

Modern Plastics Encyclopedia 1986–87, (McGraw-Hill, New York, 1986), MOPLAY 63(10A), pp. 1–886.

C. Hentschel, Fiber Optics Handbook (Hewlett-Packard GmbH, FRG, 1988), See “Fiber Coating” and “Mode Stripping of Cladding Modes.”

Eric Bear (Ed.), Engineering Design for Plastics (Reinhold, New York, 1964), see also Ref. 6.

L. T. Wood, F. Romero-Borja, R. Hage, “Effects of Radially Induced Periodic Stresses on the Optical Transmission in a Sensor Fiber,” to be submitted for publication to Appl. Opt.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Optical attenuation vs distortion amplitude of periodic microbending for a sensor fiber coated with a clear soft silicone resin. The different curves show the effect for different light wavelengths used in the experiment. (μm = micron)

Fig. 2
Fig. 2

Optical attenuation vs distortion amplitude of periodic microbending for the same fiber described in Fig. 1. In this case, the silicone coating has, however, been removed along the distortion section by applying heat. The different curves show again the effects for different light wavelengths of the sources used. (μm = micron)

Fig. 3
Fig. 3

Optical attenuation vs distortion amplitude of periodic microbending for the same sensor fiber as described in Figs. 1 and 2. Here, however, a nylon (thermoplastic polyamide) coating has been selected by the designer. The effects for different light wavelengths are shown as in previous figures. (μm = micron)

Fig. 4
Fig. 4

Optical attenuation vs distortion amplitude of periodic microbending when the same He–Ne laser is used in combination with the different sensor fiber coatings. This plot shows (upon comparison with Figs. 5 and 6) that the optimal combination of source/fiber coating would be laser/nylon. (μm = micron)

Fig. 5
Fig. 5

Optical attenuation vs distortion amplitude of periodic microbending when the same Honeywell IR–LED is used with the different sensor fiber coatings. (μm = micron)

Fig. 6
Fig. 6

Optical attenuation vs distortion amplitude of periodic microbending when the same white light from a quartz halogen lamp peaking at 900 nm is used with the different sensor fiber coatings. (μm = micron)

Metrics