Abstract

During measurement of the refractivity of a pulsed plasma, we have detected, with the help of a Jaminlike interferometer, the optical path variation caused by lamp windows. We attribute this variation to two causes: mechanical vibration and the slow cooling that follows the sharp heating. We conclude that neither has any on the measurement of plasma refractivity.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Alpher, D. R. White, “Interferometric Measurement of Electron Concentrations in Plasmas,” Phys. Fluids 1, 452–453 (1958).
    [CrossRef]
  2. R. A. Alpher, D. R. White, “Optical Refractivity of High-Temperature Gases. II. Effects Resulting from Ionization of Monoatomic Gases,” Phys. Fluids 2, 162–169 (1959).
    [CrossRef]
  3. M. I. de la Rosa, “Medida de la refractividad de una plasma pulsado: Influencia de las especies no electrónicas,” Ph.D. Thesis, U. Valladolid (1989).
  4. M. I. de la Rosa, M. C. Perez, A. M. de Frutos, S. Mar, “Optical Refractivity in a Pulsed Plasma: Influence of the Non-Electronic Species,” Phys. Rev., in press.
  5. I. Gonzalez, S. Mar, V. Cardenoso, “Design and Construction of a Source for Dense Plasma Diagnostics,” Atti Fond. Giorgio Ronchi 41, 501–510 (1986).
  6. M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1975).

1986 (1)

I. Gonzalez, S. Mar, V. Cardenoso, “Design and Construction of a Source for Dense Plasma Diagnostics,” Atti Fond. Giorgio Ronchi 41, 501–510 (1986).

1959 (1)

R. A. Alpher, D. R. White, “Optical Refractivity of High-Temperature Gases. II. Effects Resulting from Ionization of Monoatomic Gases,” Phys. Fluids 2, 162–169 (1959).
[CrossRef]

1958 (1)

R. A. Alpher, D. R. White, “Interferometric Measurement of Electron Concentrations in Plasmas,” Phys. Fluids 1, 452–453 (1958).
[CrossRef]

Alpher, R. A.

R. A. Alpher, D. R. White, “Optical Refractivity of High-Temperature Gases. II. Effects Resulting from Ionization of Monoatomic Gases,” Phys. Fluids 2, 162–169 (1959).
[CrossRef]

R. A. Alpher, D. R. White, “Interferometric Measurement of Electron Concentrations in Plasmas,” Phys. Fluids 1, 452–453 (1958).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1975).

Cardenoso, V.

I. Gonzalez, S. Mar, V. Cardenoso, “Design and Construction of a Source for Dense Plasma Diagnostics,” Atti Fond. Giorgio Ronchi 41, 501–510 (1986).

de Frutos, A. M.

M. I. de la Rosa, M. C. Perez, A. M. de Frutos, S. Mar, “Optical Refractivity in a Pulsed Plasma: Influence of the Non-Electronic Species,” Phys. Rev., in press.

de la Rosa, M. I.

M. I. de la Rosa, M. C. Perez, A. M. de Frutos, S. Mar, “Optical Refractivity in a Pulsed Plasma: Influence of the Non-Electronic Species,” Phys. Rev., in press.

M. I. de la Rosa, “Medida de la refractividad de una plasma pulsado: Influencia de las especies no electrónicas,” Ph.D. Thesis, U. Valladolid (1989).

Gonzalez, I.

I. Gonzalez, S. Mar, V. Cardenoso, “Design and Construction of a Source for Dense Plasma Diagnostics,” Atti Fond. Giorgio Ronchi 41, 501–510 (1986).

Mar, S.

I. Gonzalez, S. Mar, V. Cardenoso, “Design and Construction of a Source for Dense Plasma Diagnostics,” Atti Fond. Giorgio Ronchi 41, 501–510 (1986).

M. I. de la Rosa, M. C. Perez, A. M. de Frutos, S. Mar, “Optical Refractivity in a Pulsed Plasma: Influence of the Non-Electronic Species,” Phys. Rev., in press.

Perez, M. C.

M. I. de la Rosa, M. C. Perez, A. M. de Frutos, S. Mar, “Optical Refractivity in a Pulsed Plasma: Influence of the Non-Electronic Species,” Phys. Rev., in press.

White, D. R.

R. A. Alpher, D. R. White, “Optical Refractivity of High-Temperature Gases. II. Effects Resulting from Ionization of Monoatomic Gases,” Phys. Fluids 2, 162–169 (1959).
[CrossRef]

R. A. Alpher, D. R. White, “Interferometric Measurement of Electron Concentrations in Plasmas,” Phys. Fluids 1, 452–453 (1958).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1975).

Atti Fond. Giorgio Ronchi (1)

I. Gonzalez, S. Mar, V. Cardenoso, “Design and Construction of a Source for Dense Plasma Diagnostics,” Atti Fond. Giorgio Ronchi 41, 501–510 (1986).

Phys. Fluids (2)

R. A. Alpher, D. R. White, “Interferometric Measurement of Electron Concentrations in Plasmas,” Phys. Fluids 1, 452–453 (1958).
[CrossRef]

R. A. Alpher, D. R. White, “Optical Refractivity of High-Temperature Gases. II. Effects Resulting from Ionization of Monoatomic Gases,” Phys. Fluids 2, 162–169 (1959).
[CrossRef]

Other (3)

M. I. de la Rosa, “Medida de la refractividad de una plasma pulsado: Influencia de las especies no electrónicas,” Ph.D. Thesis, U. Valladolid (1989).

M. I. de la Rosa, M. C. Perez, A. M. de Frutos, S. Mar, “Optical Refractivity in a Pulsed Plasma: Influence of the Non-Electronic Species,” Phys. Rev., in press.

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental arrangement.

Fig. 2
Fig. 2

Phase difference measured in this experiment. Incident angles from the normal to the window are (a) 42°, (b) 37°, and (c) 25°.

Fig. 3
Fig. 3

Phase difference recorded on a large temporal scale.

Fig. 4
Fig. 4

Mechanical perturbation model. The continuous line represents the motionless state of the window; the dashed line, the deformed state.

Fig. 5
Fig. 5

Evolution of the phase difference on a very large temporal scale. This evolution cannot be explained by strange perturbations in the experiment because of the thermal and mechanical stability of this kind of interferometer.

Metrics