Abstract

This paper describes an optical surface profiling system based on phase quadrature differential interferometry. The optical path difference between two adjacent optical probe beams is measured. Interference phase calculation and sample scanning is controlled by a PC computer. Height sensitivity is of the order of 1 nm and lateral resolution is ~10 μm. Results are given which demonstrate the reproducibility and stability of the system.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Bennett, J. H. Dancy, “Stylus Profiling Instrument for Measuring Statistical Properties of Smooth Optical Surfaces,” Appl. Opt. 20, 1785–1802 (1981).
    [CrossRef] [PubMed]
  2. C. C. Huang, “Optical Heterodyne Profilometer,” Opt. Eng. 23, 365–370 (1984).
  3. M. J. Downes, W. H. McGivern, H. J. Ferguson, “Optical System for Measuring the Profiles of Super-Smooth Surfaces,” Precis. Eng. 7, 211–215 (1985).
    [CrossRef]
  4. D. Pantzer, J. Politch, J. Ek, “Heterodyne Profiling for the Angstrom Region,” Appl. Opt. 25, 4168–41712 (1986).
    [CrossRef] [PubMed]
  5. G. E. Sommargren, “Optical Heterodyne Profilometry,” Appl. Opt. 20, 610–618 (1981).
    [CrossRef] [PubMed]
  6. J. M. Eastman “Measurement of Surface Profiles Using Differential Interference Microscopy,” Workshop on Optial Fabrication and Testing, Monterey, California (April 18–20, 1984).
  7. J. M. Bennett, “Measuring of the rms Roughness, Autocovariance Function and Other Statistsical Properties of Optical Surfaces Using a FECO Scanning Interferometer,” Appl. Opt. 15, 2705–2721 (1976).
    [CrossRef] [PubMed]
  8. S. Tolansky, Multiple Scan Interferometry of Surfaces and Films, (Clarendon, Oxford, 1948).
  9. R. C. White, D. C. Emmony, “Active Feedback Stabilization of a Michelson Interferometer Using a Flexure Element,” J. Phys. E 18, 658–663 (1985).
    [CrossRef]
  10. E. R. Peck, S. W. Obetz, “Wavelength or Length Measurement by Rversible Fringe Counting,” J. Opt. Soc. Am. 43, 505–509 (1985).
    [CrossRef]
  11. D. Wilkomerson, “Measuring Pulsed Pico-Meter-Displacement Vibrations by Optical Interferometry,” Appl. Phys. Lett. 29, 183–185 (1976).
    [CrossRef]

1986

1985

R. C. White, D. C. Emmony, “Active Feedback Stabilization of a Michelson Interferometer Using a Flexure Element,” J. Phys. E 18, 658–663 (1985).
[CrossRef]

E. R. Peck, S. W. Obetz, “Wavelength or Length Measurement by Rversible Fringe Counting,” J. Opt. Soc. Am. 43, 505–509 (1985).
[CrossRef]

M. J. Downes, W. H. McGivern, H. J. Ferguson, “Optical System for Measuring the Profiles of Super-Smooth Surfaces,” Precis. Eng. 7, 211–215 (1985).
[CrossRef]

1984

C. C. Huang, “Optical Heterodyne Profilometer,” Opt. Eng. 23, 365–370 (1984).

1981

1976

Bennett, J. M.

Dancy, J. H.

Downes, M. J.

M. J. Downes, W. H. McGivern, H. J. Ferguson, “Optical System for Measuring the Profiles of Super-Smooth Surfaces,” Precis. Eng. 7, 211–215 (1985).
[CrossRef]

Eastman, J. M.

J. M. Eastman “Measurement of Surface Profiles Using Differential Interference Microscopy,” Workshop on Optial Fabrication and Testing, Monterey, California (April 18–20, 1984).

Ek, J.

Emmony, D. C.

R. C. White, D. C. Emmony, “Active Feedback Stabilization of a Michelson Interferometer Using a Flexure Element,” J. Phys. E 18, 658–663 (1985).
[CrossRef]

Ferguson, H. J.

M. J. Downes, W. H. McGivern, H. J. Ferguson, “Optical System for Measuring the Profiles of Super-Smooth Surfaces,” Precis. Eng. 7, 211–215 (1985).
[CrossRef]

Huang, C. C.

C. C. Huang, “Optical Heterodyne Profilometer,” Opt. Eng. 23, 365–370 (1984).

McGivern, W. H.

M. J. Downes, W. H. McGivern, H. J. Ferguson, “Optical System for Measuring the Profiles of Super-Smooth Surfaces,” Precis. Eng. 7, 211–215 (1985).
[CrossRef]

Obetz, S. W.

Pantzer, D.

Peck, E. R.

Politch, J.

Sommargren, G. E.

Tolansky, S.

S. Tolansky, Multiple Scan Interferometry of Surfaces and Films, (Clarendon, Oxford, 1948).

White, R. C.

R. C. White, D. C. Emmony, “Active Feedback Stabilization of a Michelson Interferometer Using a Flexure Element,” J. Phys. E 18, 658–663 (1985).
[CrossRef]

Wilkomerson, D.

D. Wilkomerson, “Measuring Pulsed Pico-Meter-Displacement Vibrations by Optical Interferometry,” Appl. Phys. Lett. 29, 183–185 (1976).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

D. Wilkomerson, “Measuring Pulsed Pico-Meter-Displacement Vibrations by Optical Interferometry,” Appl. Phys. Lett. 29, 183–185 (1976).
[CrossRef]

J. Opt. Soc. Am.

J. Phys. E

R. C. White, D. C. Emmony, “Active Feedback Stabilization of a Michelson Interferometer Using a Flexure Element,” J. Phys. E 18, 658–663 (1985).
[CrossRef]

Opt. Eng.

C. C. Huang, “Optical Heterodyne Profilometer,” Opt. Eng. 23, 365–370 (1984).

Precis. Eng.

M. J. Downes, W. H. McGivern, H. J. Ferguson, “Optical System for Measuring the Profiles of Super-Smooth Surfaces,” Precis. Eng. 7, 211–215 (1985).
[CrossRef]

Other

J. M. Eastman “Measurement of Surface Profiles Using Differential Interference Microscopy,” Workshop on Optial Fabrication and Testing, Monterey, California (April 18–20, 1984).

S. Tolansky, Multiple Scan Interferometry of Surfaces and Films, (Clarendon, Oxford, 1948).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental arrangement of the system.

Fig. 2
Fig. 2

Interferometer arrangement.

Fig. 3
Fig. 3

Line profile across a thin film edge using (a) Rank Precision Industries Ltd. Talystep stylus machine, and (b) differential phase quadrature surface profiling interferometer.

Fig. 4
Fig. 4

Surface profiles of ordinary quality mirror in the forward and reverse directions demonstrate repeatability of system. Also a scan with the translation stage disabled to demonstrate immunity against environmental disturbances.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

z ( k Δ x ) = i = 1 k ( δ z / δ x ) i Δ x             ( k = integer ) .
I 1 = A I a I 2 = B I b } .
I 3 = A 3 I a + B 3 I b + γ 2 ( A 3 I a B 3 I b ) 1 / 2 sin ( Θ a - Θ b ) I 4 = A 4 I a + B 4 I b + γ 2 ( A 4 I b B 4 I b ) 1 / 2 cos ( Θ a - Θ b ) ] .
( Θ a - Θ b ) = ( κ ( 2 Δ z i ) + Φ a b ) = Θ ,
R 3 = A 3 / A = I 3 / I 1 ,             R 4 = A 4 / A = I 4 / I 1 ,
S 3 = B 3 / B = I 3 / I 2 ,             S 4 = B 4 / B = I 4 / I 2 .
γ sin Θ = [ I 3 - ( R 3 I 1 + S 3 I 2 ) ] / 2 R 3 I 1 + S 3 I 2 , γ cos Θ = [ I 4 - ( R 4 I 1 + S 4 I 2 ) ] / 2 R 4 I 1 + S 4 I 2 .

Metrics