Abstract

Performance data characterizing a direct optical activation device that operates either pneumatically or hydraulically are presented. This direct conversion device for optical signals offers immunity to electromagnetic interference and provides an alternative to electrooptic and electromechanical valves for actuation. The device uses a modified fluidic laminar proportional amplifier, employing laser induced deflection of the fluidic supply jet to perform the signal conversion. The pneumatic version operates at a supply pressure of 20.7 kPa having a gain of 15.5 kPa/W of optical power and a bandwidth of 140 Hz. The hydraulic version of the device operates with MIL-5606 hydraulic oil pressurized to a supply pressure of 1300 kPa. The hydraulic version has a gain of 170 kPa/W of input optical power and a bandwidth of 170 Hz. Experiments have determined that the laser induced deflection of the supply jet is a result of optical modulation of the fluid viscosity which creates an asymmetric jet flow.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. G. Bell, “Upon the Production of Sound by Radiant Energy,” Philos. Mag. 11, 510–528 (1881).
    [CrossRef]
  2. D. F. Nelson, K. W. Wecht, D. A. Kleinman, “Photophone Performance,” J. Acoust. Soc. Am. 60, 251–255 (1976).
    [CrossRef]
  3. J. O. Gurney, “Photofluidic Interface,” J. Dyn. Syst. Meas. Control 106, 90–97 (1984).
    [CrossRef]
  4. B. E. Jones, M. S. Beck, J. M. Watson, “Feasibility Study of Opto-Pneumatic Converters,” OSCA Proceedings, p. 1–49, 1983.
  5. J. W. Joyce, “Design Guide for Fluidic Laminated Proportional Amplifiers and Laminar Jet Rate Sensors,” U.S. Gov. Report No. HDL-SR-84-6 (1984).

1984

J. O. Gurney, “Photofluidic Interface,” J. Dyn. Syst. Meas. Control 106, 90–97 (1984).
[CrossRef]

1983

B. E. Jones, M. S. Beck, J. M. Watson, “Feasibility Study of Opto-Pneumatic Converters,” OSCA Proceedings, p. 1–49, 1983.

1976

D. F. Nelson, K. W. Wecht, D. A. Kleinman, “Photophone Performance,” J. Acoust. Soc. Am. 60, 251–255 (1976).
[CrossRef]

1881

A. G. Bell, “Upon the Production of Sound by Radiant Energy,” Philos. Mag. 11, 510–528 (1881).
[CrossRef]

Beck, M. S.

B. E. Jones, M. S. Beck, J. M. Watson, “Feasibility Study of Opto-Pneumatic Converters,” OSCA Proceedings, p. 1–49, 1983.

Bell, A. G.

A. G. Bell, “Upon the Production of Sound by Radiant Energy,” Philos. Mag. 11, 510–528 (1881).
[CrossRef]

Gurney, J. O.

J. O. Gurney, “Photofluidic Interface,” J. Dyn. Syst. Meas. Control 106, 90–97 (1984).
[CrossRef]

Jones, B. E.

B. E. Jones, M. S. Beck, J. M. Watson, “Feasibility Study of Opto-Pneumatic Converters,” OSCA Proceedings, p. 1–49, 1983.

Joyce, J. W.

J. W. Joyce, “Design Guide for Fluidic Laminated Proportional Amplifiers and Laminar Jet Rate Sensors,” U.S. Gov. Report No. HDL-SR-84-6 (1984).

Kleinman, D. A.

D. F. Nelson, K. W. Wecht, D. A. Kleinman, “Photophone Performance,” J. Acoust. Soc. Am. 60, 251–255 (1976).
[CrossRef]

Nelson, D. F.

D. F. Nelson, K. W. Wecht, D. A. Kleinman, “Photophone Performance,” J. Acoust. Soc. Am. 60, 251–255 (1976).
[CrossRef]

Watson, J. M.

B. E. Jones, M. S. Beck, J. M. Watson, “Feasibility Study of Opto-Pneumatic Converters,” OSCA Proceedings, p. 1–49, 1983.

Wecht, K. W.

D. F. Nelson, K. W. Wecht, D. A. Kleinman, “Photophone Performance,” J. Acoust. Soc. Am. 60, 251–255 (1976).
[CrossRef]

J. Acoust. Soc. Am.

D. F. Nelson, K. W. Wecht, D. A. Kleinman, “Photophone Performance,” J. Acoust. Soc. Am. 60, 251–255 (1976).
[CrossRef]

J. Dyn. Syst. Meas. Control

J. O. Gurney, “Photofluidic Interface,” J. Dyn. Syst. Meas. Control 106, 90–97 (1984).
[CrossRef]

OSCA Proceedings

B. E. Jones, M. S. Beck, J. M. Watson, “Feasibility Study of Opto-Pneumatic Converters,” OSCA Proceedings, p. 1–49, 1983.

Philos. Mag.

A. G. Bell, “Upon the Production of Sound by Radiant Energy,” Philos. Mag. 11, 510–528 (1881).
[CrossRef]

Other

J. W. Joyce, “Design Guide for Fluidic Laminated Proportional Amplifiers and Laminar Jet Rate Sensors,” U.S. Gov. Report No. HDL-SR-84-6 (1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Conventional fluidic laminar proportional amplifier (LPA) assembly.

Fig. 2
Fig. 2

Optofluidic interface assemble.

Fig. 3
Fig. 3

Photograph of hydraulic optofluidic interface hardware.

Fig. 4
Fig. 4

Schematic diagram of test system used to evaluate optofluidic devices.

Fig. 5
Fig. 5

Pneumatic interface output signal vs input optical power.

Fig. 6
Fig. 6

Hydraulic interface output signal and kinematic viscosity change vs input optical power.

Fig. 7
Fig. 7

Hydraulic optofluidic interface frequency response.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

σ N r = h ( 2 P s - v / ρ ) 1 / 2 / ν ,

Metrics