Abstract

Polymeric and metal oxide planar waveguides were used to demonstrate the potential of a miniature spectrometer. Multiwavelength light was transmitted through the substrate and coupled into the waveguide through a diffraction grating located at the substrate/waveguide interface. A second diffraction grating spatially dispersed the light propagated through the waveguide into component wavelengths for rapid analysis with a photodiode array detector. These results suggest that planar waveguides can be used to perform attenuated total internal reflection measurements in the visible and near-IR regions for chemical analysis of weak vibrational overtones and combination modes with effective path lengths of several millimeters.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. T. Ives, W. M. Reichert, “Protein Absorption on the Surface of a Thin-Film Polymer Integrated Optical Waveguide,” Appl. Spectrosc. 42, 68–72 (1988).
    [CrossRef]
  2. M. Phelan, K. Tiefenthaler, W. Lukosz, “Integrated Optical Input Grating Couplers and Biochemical Sensors,” Sensors and Actuators, 15, 285–295 (1988).
    [CrossRef]
  3. K. Tiefenthaler, W. Lukosz, “Grating Couplers as Integrated Optical Humidity and Gas Sensors,” Thin Solid Films 126, 205–211 (1985).
    [CrossRef]
  4. J. D. Swalen, R. Santo, M. Tacke, J. Fischer, “Properties of Polymeric Thin Films by Integrated Optical Techniques,” IBM J. Res. Dev.March, 1977, 168–174 (1977).
    [CrossRef]
  5. D. Marcuse, Theory of Dielectric Optical Waveguides, Yoh-Han Pao, Ed. Academic, New York, 1974).
  6. H. Hogelnik “Theory of Dielectric Waveguides,” Integrated Optics, T. Tamir, Ed. (Springer-Verlag, New York, 1975), Ch. 3.
  7. X. Mai, R. Moshrefzadeh, U. J. Gibson, G. I. Stegeman, C. T. Seaton, “Simple Versatile Method for Fabricating Guided-Wave Gratings,” Appl. Opt. 24, 3155–3161 (1985).
    [CrossRef] [PubMed]
  8. J. C. Manifacier, J. Gasiot, J. P. Fillard, “A Simple Method for the Determination of the Optical Constants n, k and the Thickness of Weakly Absorbing Thin Film,” J. Phys. E. 9, 1002–1003 (1976).
    [CrossRef]
  9. R. L. Davis, R. S. Hickernell, “Thin Film Oxides of Vanadium, Niobium and Tantalum for Integrated Optics,” Proc. Soc. Photo-Opt. Instrum. Eng. 408, 27–33 (1983).
  10. J. J. Kelly, C. H. Barlow, T. M. Jinguji, J. B. Callis, “Prediction of Gasoline Octane Numbers from Near Infrared Spectral Features in the Range 660–1215 nm,” Anal. Chem. 61, 313–320 (1989).
    [CrossRef]
  11. R. Moshrezadeh, B. Svensson, Xu Mai, C. T. Seaton, G. I. Stegeman, “Chirped Gratings for Efficient Coupling into Nonlinear Waveguides,” Appl. Phys. Lett. 51, 390–391 (1987).
    [CrossRef]

1989 (1)

J. J. Kelly, C. H. Barlow, T. M. Jinguji, J. B. Callis, “Prediction of Gasoline Octane Numbers from Near Infrared Spectral Features in the Range 660–1215 nm,” Anal. Chem. 61, 313–320 (1989).
[CrossRef]

1988 (2)

J. T. Ives, W. M. Reichert, “Protein Absorption on the Surface of a Thin-Film Polymer Integrated Optical Waveguide,” Appl. Spectrosc. 42, 68–72 (1988).
[CrossRef]

M. Phelan, K. Tiefenthaler, W. Lukosz, “Integrated Optical Input Grating Couplers and Biochemical Sensors,” Sensors and Actuators, 15, 285–295 (1988).
[CrossRef]

1987 (1)

R. Moshrezadeh, B. Svensson, Xu Mai, C. T. Seaton, G. I. Stegeman, “Chirped Gratings for Efficient Coupling into Nonlinear Waveguides,” Appl. Phys. Lett. 51, 390–391 (1987).
[CrossRef]

1985 (2)

X. Mai, R. Moshrefzadeh, U. J. Gibson, G. I. Stegeman, C. T. Seaton, “Simple Versatile Method for Fabricating Guided-Wave Gratings,” Appl. Opt. 24, 3155–3161 (1985).
[CrossRef] [PubMed]

K. Tiefenthaler, W. Lukosz, “Grating Couplers as Integrated Optical Humidity and Gas Sensors,” Thin Solid Films 126, 205–211 (1985).
[CrossRef]

1983 (1)

R. L. Davis, R. S. Hickernell, “Thin Film Oxides of Vanadium, Niobium and Tantalum for Integrated Optics,” Proc. Soc. Photo-Opt. Instrum. Eng. 408, 27–33 (1983).

1977 (1)

J. D. Swalen, R. Santo, M. Tacke, J. Fischer, “Properties of Polymeric Thin Films by Integrated Optical Techniques,” IBM J. Res. Dev.March, 1977, 168–174 (1977).
[CrossRef]

1976 (1)

J. C. Manifacier, J. Gasiot, J. P. Fillard, “A Simple Method for the Determination of the Optical Constants n, k and the Thickness of Weakly Absorbing Thin Film,” J. Phys. E. 9, 1002–1003 (1976).
[CrossRef]

Barlow, C. H.

J. J. Kelly, C. H. Barlow, T. M. Jinguji, J. B. Callis, “Prediction of Gasoline Octane Numbers from Near Infrared Spectral Features in the Range 660–1215 nm,” Anal. Chem. 61, 313–320 (1989).
[CrossRef]

Callis, J. B.

J. J. Kelly, C. H. Barlow, T. M. Jinguji, J. B. Callis, “Prediction of Gasoline Octane Numbers from Near Infrared Spectral Features in the Range 660–1215 nm,” Anal. Chem. 61, 313–320 (1989).
[CrossRef]

Davis, R. L.

R. L. Davis, R. S. Hickernell, “Thin Film Oxides of Vanadium, Niobium and Tantalum for Integrated Optics,” Proc. Soc. Photo-Opt. Instrum. Eng. 408, 27–33 (1983).

Fillard, J. P.

J. C. Manifacier, J. Gasiot, J. P. Fillard, “A Simple Method for the Determination of the Optical Constants n, k and the Thickness of Weakly Absorbing Thin Film,” J. Phys. E. 9, 1002–1003 (1976).
[CrossRef]

Fischer, J.

J. D. Swalen, R. Santo, M. Tacke, J. Fischer, “Properties of Polymeric Thin Films by Integrated Optical Techniques,” IBM J. Res. Dev.March, 1977, 168–174 (1977).
[CrossRef]

Gasiot, J.

J. C. Manifacier, J. Gasiot, J. P. Fillard, “A Simple Method for the Determination of the Optical Constants n, k and the Thickness of Weakly Absorbing Thin Film,” J. Phys. E. 9, 1002–1003 (1976).
[CrossRef]

Gibson, U. J.

Hickernell, R. S.

R. L. Davis, R. S. Hickernell, “Thin Film Oxides of Vanadium, Niobium and Tantalum for Integrated Optics,” Proc. Soc. Photo-Opt. Instrum. Eng. 408, 27–33 (1983).

Hogelnik, H.

H. Hogelnik “Theory of Dielectric Waveguides,” Integrated Optics, T. Tamir, Ed. (Springer-Verlag, New York, 1975), Ch. 3.

Ives, J. T.

Jinguji, T. M.

J. J. Kelly, C. H. Barlow, T. M. Jinguji, J. B. Callis, “Prediction of Gasoline Octane Numbers from Near Infrared Spectral Features in the Range 660–1215 nm,” Anal. Chem. 61, 313–320 (1989).
[CrossRef]

Kelly, J. J.

J. J. Kelly, C. H. Barlow, T. M. Jinguji, J. B. Callis, “Prediction of Gasoline Octane Numbers from Near Infrared Spectral Features in the Range 660–1215 nm,” Anal. Chem. 61, 313–320 (1989).
[CrossRef]

Lukosz, W.

M. Phelan, K. Tiefenthaler, W. Lukosz, “Integrated Optical Input Grating Couplers and Biochemical Sensors,” Sensors and Actuators, 15, 285–295 (1988).
[CrossRef]

K. Tiefenthaler, W. Lukosz, “Grating Couplers as Integrated Optical Humidity and Gas Sensors,” Thin Solid Films 126, 205–211 (1985).
[CrossRef]

Mai, X.

Mai, Xu

R. Moshrezadeh, B. Svensson, Xu Mai, C. T. Seaton, G. I. Stegeman, “Chirped Gratings for Efficient Coupling into Nonlinear Waveguides,” Appl. Phys. Lett. 51, 390–391 (1987).
[CrossRef]

Manifacier, J. C.

J. C. Manifacier, J. Gasiot, J. P. Fillard, “A Simple Method for the Determination of the Optical Constants n, k and the Thickness of Weakly Absorbing Thin Film,” J. Phys. E. 9, 1002–1003 (1976).
[CrossRef]

Marcuse, D.

D. Marcuse, Theory of Dielectric Optical Waveguides, Yoh-Han Pao, Ed. Academic, New York, 1974).

Moshrefzadeh, R.

Moshrezadeh, R.

R. Moshrezadeh, B. Svensson, Xu Mai, C. T. Seaton, G. I. Stegeman, “Chirped Gratings for Efficient Coupling into Nonlinear Waveguides,” Appl. Phys. Lett. 51, 390–391 (1987).
[CrossRef]

Phelan, M.

M. Phelan, K. Tiefenthaler, W. Lukosz, “Integrated Optical Input Grating Couplers and Biochemical Sensors,” Sensors and Actuators, 15, 285–295 (1988).
[CrossRef]

Reichert, W. M.

Santo, R.

J. D. Swalen, R. Santo, M. Tacke, J. Fischer, “Properties of Polymeric Thin Films by Integrated Optical Techniques,” IBM J. Res. Dev.March, 1977, 168–174 (1977).
[CrossRef]

Seaton, C. T.

R. Moshrezadeh, B. Svensson, Xu Mai, C. T. Seaton, G. I. Stegeman, “Chirped Gratings for Efficient Coupling into Nonlinear Waveguides,” Appl. Phys. Lett. 51, 390–391 (1987).
[CrossRef]

X. Mai, R. Moshrefzadeh, U. J. Gibson, G. I. Stegeman, C. T. Seaton, “Simple Versatile Method for Fabricating Guided-Wave Gratings,” Appl. Opt. 24, 3155–3161 (1985).
[CrossRef] [PubMed]

Stegeman, G. I.

R. Moshrezadeh, B. Svensson, Xu Mai, C. T. Seaton, G. I. Stegeman, “Chirped Gratings for Efficient Coupling into Nonlinear Waveguides,” Appl. Phys. Lett. 51, 390–391 (1987).
[CrossRef]

X. Mai, R. Moshrefzadeh, U. J. Gibson, G. I. Stegeman, C. T. Seaton, “Simple Versatile Method for Fabricating Guided-Wave Gratings,” Appl. Opt. 24, 3155–3161 (1985).
[CrossRef] [PubMed]

Svensson, B.

R. Moshrezadeh, B. Svensson, Xu Mai, C. T. Seaton, G. I. Stegeman, “Chirped Gratings for Efficient Coupling into Nonlinear Waveguides,” Appl. Phys. Lett. 51, 390–391 (1987).
[CrossRef]

Swalen, J. D.

J. D. Swalen, R. Santo, M. Tacke, J. Fischer, “Properties of Polymeric Thin Films by Integrated Optical Techniques,” IBM J. Res. Dev.March, 1977, 168–174 (1977).
[CrossRef]

Tacke, M.

J. D. Swalen, R. Santo, M. Tacke, J. Fischer, “Properties of Polymeric Thin Films by Integrated Optical Techniques,” IBM J. Res. Dev.March, 1977, 168–174 (1977).
[CrossRef]

Tiefenthaler, K.

M. Phelan, K. Tiefenthaler, W. Lukosz, “Integrated Optical Input Grating Couplers and Biochemical Sensors,” Sensors and Actuators, 15, 285–295 (1988).
[CrossRef]

K. Tiefenthaler, W. Lukosz, “Grating Couplers as Integrated Optical Humidity and Gas Sensors,” Thin Solid Films 126, 205–211 (1985).
[CrossRef]

Anal. Chem. (1)

J. J. Kelly, C. H. Barlow, T. M. Jinguji, J. B. Callis, “Prediction of Gasoline Octane Numbers from Near Infrared Spectral Features in the Range 660–1215 nm,” Anal. Chem. 61, 313–320 (1989).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

R. Moshrezadeh, B. Svensson, Xu Mai, C. T. Seaton, G. I. Stegeman, “Chirped Gratings for Efficient Coupling into Nonlinear Waveguides,” Appl. Phys. Lett. 51, 390–391 (1987).
[CrossRef]

Appl. Spectrosc. (1)

IBM J. Res. Dev. (1)

J. D. Swalen, R. Santo, M. Tacke, J. Fischer, “Properties of Polymeric Thin Films by Integrated Optical Techniques,” IBM J. Res. Dev.March, 1977, 168–174 (1977).
[CrossRef]

J. Phys. E. (1)

J. C. Manifacier, J. Gasiot, J. P. Fillard, “A Simple Method for the Determination of the Optical Constants n, k and the Thickness of Weakly Absorbing Thin Film,” J. Phys. E. 9, 1002–1003 (1976).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

R. L. Davis, R. S. Hickernell, “Thin Film Oxides of Vanadium, Niobium and Tantalum for Integrated Optics,” Proc. Soc. Photo-Opt. Instrum. Eng. 408, 27–33 (1983).

Sensors and Actuators (1)

M. Phelan, K. Tiefenthaler, W. Lukosz, “Integrated Optical Input Grating Couplers and Biochemical Sensors,” Sensors and Actuators, 15, 285–295 (1988).
[CrossRef]

Thin Solid Films (1)

K. Tiefenthaler, W. Lukosz, “Grating Couplers as Integrated Optical Humidity and Gas Sensors,” Thin Solid Films 126, 205–211 (1985).
[CrossRef]

Other (2)

D. Marcuse, Theory of Dielectric Optical Waveguides, Yoh-Han Pao, Ed. Academic, New York, 1974).

H. Hogelnik “Theory of Dielectric Waveguides,” Integrated Optics, T. Tamir, Ed. (Springer-Verlag, New York, 1975), Ch. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Planar waveguide sensor.

Fig. 2
Fig. 2

Polystyrene mode chart.

Fig. 3
Fig. 3

Planar waveguide spectrometer concept.

Fig. 4
Fig. 4

Propagation loss.

Fig. 5
Fig. 5

Planar waveguide test apparatus.

Fig. 6
Fig. 6

Ta2O5 grating chart.

Fig. 7
Fig. 7

Polystyrene grating chart.

Fig. 8
Fig. 8

Ar laser multiline input to planar waveguide.

Fig. 9
Fig. 9

Photodiode array detection of planar waveguide with Ar and He–Ne laser sources.

Fig. 10
Fig. 10

ATIR Congo Red dye on Ta2O5 waveguide.

Fig. 11
Fig. 11

Effective path lengths for Ta2O5 waveguides.

Tables (1)

Tables Icon

Table I Ta2O5 Loss Data

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

tan - 1 K 1 n 2 cos Θ + tan - 1 K 3 n 2 cos Θ + m π = k t n 2 cos Θ             ( for TE ) , tan - 1 n 2 K 1 n 1 2 cos Θ + tan - 1 n 2 K 3 n 3 2 cos Θ + m π = k t n 2 cos Θ             ( for TM ) ,
K i = n 2 2 sin 2 Θ - n i 2             and             k = 2 π / λ ,
d ( n 2 sin Θ - n 3 sin ϕ ) = p λ ,
sin Ω = n 2 sin Θ - p λ / d .

Metrics