Abstract

A diagnostic technique based on the oxygen quenching of laser-induced fluorescence from naphthalene has been developed to investigate whether internal circulation is important in submillimeter hydrocarbon droplets. Images have been obtained in 300–500 μm diam droplets of decane. Oxygen is absorbed into the surface liquid of initially oxygen-free droplets and quenches the naphthalene fluorescence. The resulting fluorescence image, including darker zones where oxygen is present, is recorded on a 2-D CCD detector. Computer processing of the images obtained with and without oxygen present reveals internal circulation patterns.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. A. Amsden, P. J. O’Rourke, T. D. Butler, “KIVA-II: a Computer Program for Chemically Reactive Flows with Sprays,” Technical Report LA-11560-MS, Los Alamos National Laboratory (May1989).
  2. G. J. Sturgess, S. A. Syed, K. R. McMasnus, “Calculation of a Hollow-Cone Liquid Spray in a Uniform Air Stream,” in Technical Digest, AIAA/SAE/ASME Twentieth Propulsion Conference, Cincinnati (11–13 June 1984), paper AIAA 84-1322.
  3. C. K. Law, “Recent Advances in Droplet Vaporization and Combustion,” Prog. Energy Combust. Sci. 8, 171–201 (1982).
    [CrossRef]
  4. B. R. Sanders, N. E. Bergen, “Workshop on Mass, Momentum, and Energy Exchange in Combusting Sprays: Droplet Studies,” Report SAND89-8442, Sandia National Laboratories, Livermore, CA (28–29 Mar. 1988).
  5. S. K. Aggarwal, A. Y. Tong, W. A. Sirignano, “A Comparison of Vaporization Models in Spray Combustion,” AIAA J. 22, 1448–1457 (1984).
    [CrossRef]
  6. G. Patnaik, W. A. Sirignano, H. A. Dwyer, B. R. Sanders, “A Numerical Technique for the Solution of a Vaporizing Fuel Droplet,” Prog. Astronaut. Aeronaut. 105, 253–266 (1986).
  7. H. A. Dwyer, R. J. Kee, P. K. Barr, B. R. Sanders, “Transient Droplet Heating at High Peclet Number,” J. Fluids Eng. 105, 83–88 (1983).
    [CrossRef]
  8. B. Abramzon, W. A. Sirignano, “Droplet Vaporization Model for Spray Combustion Calculations,” paper presented at the AIAA Twenty-Sixth Aerospace Sciences Meeting, Reno (11–14 Jan. 1988), paper 88-0636.
  9. G. Gogos, S. S. Sadhal, P. S. Ayyaswamy, T. Sundararajan, “Thin-Flame Theory for the Combustion of a Moving Liquid Drop: Effects Due to Variable Density,” J. Fluid Mech. 171, 121–144 (1986).
    [CrossRef]
  10. D. L. R. Oliver, J. N. Chung, “Steady Flows Inside and Around a Fluid Sphere at Low Reynolds Numbers,” J. Fluid Mech. 154, 215–230 (1985).
    [CrossRef]
  11. G. Ryskin, “Heat or Mass Transfer from a Moving Drop—Some Approximate Relations for the Nusselt Number,” Int. Comm. Heat Mass Transfer 14, 741–749 (1987).
    [CrossRef]
  12. R. Clift, J. R. Grace, M. E. Weber, Bubbles, Drops, and Particles (Academic, New York, 1978).
  13. T. W. Shield, D. B. Bogy, F. E. Talke, “Drop Formation by DOD Ink Jet Nozzles: a Comparison of Experiment and Numerical Simulation,” IBM J. Res. Dev. 31, 96–110 (1987).
    [CrossRef]
  14. I. B. Berlman, Fluorescence Spectra of Aromatic Molecules (Academic, New York, 1971).
  15. D. S. Benincasa, P. W. Barber, J-Z. Zhang, W-F. Hsieh, R. K. Chang, “Spatial Distribution of the Internal and Near-Field Intensities of Large Cylindrical and Spherical Scatterers,” Appl. Opt. 26, 1348–1356 (1987).
    [CrossRef] [PubMed]
  16. L. A. Melton, M. Winter, unpublished data.
  17. E. Marschall, “Investigation of Velocity Distribution During Drop Formation and Release,” Final Report, National Science Foundation Grant CME 79-18399 (1983).
  18. V. Srinivasan, R. C. Aiken, “Mass Transfer to Droplets Formed by the Controlled Breakup of a Cylindrical Jet—Physical Absorption,” Chem. Eng. Sci. 43, 3141–3150 (1988).
    [CrossRef]
  19. T-H. Chang, J. N. Chung, “The Effect of a Stagnant Surfactant Cap on the Transport Mechanisms of a Condensing Droplet in a High Reynolds Number Flow,” Comput. Fluids 15, 1–11 (1987).
    [CrossRef]

1988 (1)

V. Srinivasan, R. C. Aiken, “Mass Transfer to Droplets Formed by the Controlled Breakup of a Cylindrical Jet—Physical Absorption,” Chem. Eng. Sci. 43, 3141–3150 (1988).
[CrossRef]

1987 (4)

T-H. Chang, J. N. Chung, “The Effect of a Stagnant Surfactant Cap on the Transport Mechanisms of a Condensing Droplet in a High Reynolds Number Flow,” Comput. Fluids 15, 1–11 (1987).
[CrossRef]

G. Ryskin, “Heat or Mass Transfer from a Moving Drop—Some Approximate Relations for the Nusselt Number,” Int. Comm. Heat Mass Transfer 14, 741–749 (1987).
[CrossRef]

T. W. Shield, D. B. Bogy, F. E. Talke, “Drop Formation by DOD Ink Jet Nozzles: a Comparison of Experiment and Numerical Simulation,” IBM J. Res. Dev. 31, 96–110 (1987).
[CrossRef]

D. S. Benincasa, P. W. Barber, J-Z. Zhang, W-F. Hsieh, R. K. Chang, “Spatial Distribution of the Internal and Near-Field Intensities of Large Cylindrical and Spherical Scatterers,” Appl. Opt. 26, 1348–1356 (1987).
[CrossRef] [PubMed]

1986 (2)

G. Gogos, S. S. Sadhal, P. S. Ayyaswamy, T. Sundararajan, “Thin-Flame Theory for the Combustion of a Moving Liquid Drop: Effects Due to Variable Density,” J. Fluid Mech. 171, 121–144 (1986).
[CrossRef]

G. Patnaik, W. A. Sirignano, H. A. Dwyer, B. R. Sanders, “A Numerical Technique for the Solution of a Vaporizing Fuel Droplet,” Prog. Astronaut. Aeronaut. 105, 253–266 (1986).

1985 (1)

D. L. R. Oliver, J. N. Chung, “Steady Flows Inside and Around a Fluid Sphere at Low Reynolds Numbers,” J. Fluid Mech. 154, 215–230 (1985).
[CrossRef]

1984 (1)

S. K. Aggarwal, A. Y. Tong, W. A. Sirignano, “A Comparison of Vaporization Models in Spray Combustion,” AIAA J. 22, 1448–1457 (1984).
[CrossRef]

1983 (1)

H. A. Dwyer, R. J. Kee, P. K. Barr, B. R. Sanders, “Transient Droplet Heating at High Peclet Number,” J. Fluids Eng. 105, 83–88 (1983).
[CrossRef]

1982 (1)

C. K. Law, “Recent Advances in Droplet Vaporization and Combustion,” Prog. Energy Combust. Sci. 8, 171–201 (1982).
[CrossRef]

Abramzon, B.

B. Abramzon, W. A. Sirignano, “Droplet Vaporization Model for Spray Combustion Calculations,” paper presented at the AIAA Twenty-Sixth Aerospace Sciences Meeting, Reno (11–14 Jan. 1988), paper 88-0636.

Aggarwal, S. K.

S. K. Aggarwal, A. Y. Tong, W. A. Sirignano, “A Comparison of Vaporization Models in Spray Combustion,” AIAA J. 22, 1448–1457 (1984).
[CrossRef]

Aiken, R. C.

V. Srinivasan, R. C. Aiken, “Mass Transfer to Droplets Formed by the Controlled Breakup of a Cylindrical Jet—Physical Absorption,” Chem. Eng. Sci. 43, 3141–3150 (1988).
[CrossRef]

Amsden, A. A.

A. A. Amsden, P. J. O’Rourke, T. D. Butler, “KIVA-II: a Computer Program for Chemically Reactive Flows with Sprays,” Technical Report LA-11560-MS, Los Alamos National Laboratory (May1989).

Ayyaswamy, P. S.

G. Gogos, S. S. Sadhal, P. S. Ayyaswamy, T. Sundararajan, “Thin-Flame Theory for the Combustion of a Moving Liquid Drop: Effects Due to Variable Density,” J. Fluid Mech. 171, 121–144 (1986).
[CrossRef]

Barber, P. W.

Barr, P. K.

H. A. Dwyer, R. J. Kee, P. K. Barr, B. R. Sanders, “Transient Droplet Heating at High Peclet Number,” J. Fluids Eng. 105, 83–88 (1983).
[CrossRef]

Benincasa, D. S.

Bergen, N. E.

B. R. Sanders, N. E. Bergen, “Workshop on Mass, Momentum, and Energy Exchange in Combusting Sprays: Droplet Studies,” Report SAND89-8442, Sandia National Laboratories, Livermore, CA (28–29 Mar. 1988).

Berlman, I. B.

I. B. Berlman, Fluorescence Spectra of Aromatic Molecules (Academic, New York, 1971).

Bogy, D. B.

T. W. Shield, D. B. Bogy, F. E. Talke, “Drop Formation by DOD Ink Jet Nozzles: a Comparison of Experiment and Numerical Simulation,” IBM J. Res. Dev. 31, 96–110 (1987).
[CrossRef]

Butler, T. D.

A. A. Amsden, P. J. O’Rourke, T. D. Butler, “KIVA-II: a Computer Program for Chemically Reactive Flows with Sprays,” Technical Report LA-11560-MS, Los Alamos National Laboratory (May1989).

Chang, R. K.

Chang, T-H.

T-H. Chang, J. N. Chung, “The Effect of a Stagnant Surfactant Cap on the Transport Mechanisms of a Condensing Droplet in a High Reynolds Number Flow,” Comput. Fluids 15, 1–11 (1987).
[CrossRef]

Chung, J. N.

T-H. Chang, J. N. Chung, “The Effect of a Stagnant Surfactant Cap on the Transport Mechanisms of a Condensing Droplet in a High Reynolds Number Flow,” Comput. Fluids 15, 1–11 (1987).
[CrossRef]

D. L. R. Oliver, J. N. Chung, “Steady Flows Inside and Around a Fluid Sphere at Low Reynolds Numbers,” J. Fluid Mech. 154, 215–230 (1985).
[CrossRef]

Clift, R.

R. Clift, J. R. Grace, M. E. Weber, Bubbles, Drops, and Particles (Academic, New York, 1978).

Dwyer, H. A.

G. Patnaik, W. A. Sirignano, H. A. Dwyer, B. R. Sanders, “A Numerical Technique for the Solution of a Vaporizing Fuel Droplet,” Prog. Astronaut. Aeronaut. 105, 253–266 (1986).

H. A. Dwyer, R. J. Kee, P. K. Barr, B. R. Sanders, “Transient Droplet Heating at High Peclet Number,” J. Fluids Eng. 105, 83–88 (1983).
[CrossRef]

Gogos, G.

G. Gogos, S. S. Sadhal, P. S. Ayyaswamy, T. Sundararajan, “Thin-Flame Theory for the Combustion of a Moving Liquid Drop: Effects Due to Variable Density,” J. Fluid Mech. 171, 121–144 (1986).
[CrossRef]

Grace, J. R.

R. Clift, J. R. Grace, M. E. Weber, Bubbles, Drops, and Particles (Academic, New York, 1978).

Hsieh, W-F.

Kee, R. J.

H. A. Dwyer, R. J. Kee, P. K. Barr, B. R. Sanders, “Transient Droplet Heating at High Peclet Number,” J. Fluids Eng. 105, 83–88 (1983).
[CrossRef]

Law, C. K.

C. K. Law, “Recent Advances in Droplet Vaporization and Combustion,” Prog. Energy Combust. Sci. 8, 171–201 (1982).
[CrossRef]

Marschall, E.

E. Marschall, “Investigation of Velocity Distribution During Drop Formation and Release,” Final Report, National Science Foundation Grant CME 79-18399 (1983).

McMasnus, K. R.

G. J. Sturgess, S. A. Syed, K. R. McMasnus, “Calculation of a Hollow-Cone Liquid Spray in a Uniform Air Stream,” in Technical Digest, AIAA/SAE/ASME Twentieth Propulsion Conference, Cincinnati (11–13 June 1984), paper AIAA 84-1322.

Melton, L. A.

L. A. Melton, M. Winter, unpublished data.

O’Rourke, P. J.

A. A. Amsden, P. J. O’Rourke, T. D. Butler, “KIVA-II: a Computer Program for Chemically Reactive Flows with Sprays,” Technical Report LA-11560-MS, Los Alamos National Laboratory (May1989).

Oliver, D. L. R.

D. L. R. Oliver, J. N. Chung, “Steady Flows Inside and Around a Fluid Sphere at Low Reynolds Numbers,” J. Fluid Mech. 154, 215–230 (1985).
[CrossRef]

Patnaik, G.

G. Patnaik, W. A. Sirignano, H. A. Dwyer, B. R. Sanders, “A Numerical Technique for the Solution of a Vaporizing Fuel Droplet,” Prog. Astronaut. Aeronaut. 105, 253–266 (1986).

Ryskin, G.

G. Ryskin, “Heat or Mass Transfer from a Moving Drop—Some Approximate Relations for the Nusselt Number,” Int. Comm. Heat Mass Transfer 14, 741–749 (1987).
[CrossRef]

Sadhal, S. S.

G. Gogos, S. S. Sadhal, P. S. Ayyaswamy, T. Sundararajan, “Thin-Flame Theory for the Combustion of a Moving Liquid Drop: Effects Due to Variable Density,” J. Fluid Mech. 171, 121–144 (1986).
[CrossRef]

Sanders, B. R.

G. Patnaik, W. A. Sirignano, H. A. Dwyer, B. R. Sanders, “A Numerical Technique for the Solution of a Vaporizing Fuel Droplet,” Prog. Astronaut. Aeronaut. 105, 253–266 (1986).

H. A. Dwyer, R. J. Kee, P. K. Barr, B. R. Sanders, “Transient Droplet Heating at High Peclet Number,” J. Fluids Eng. 105, 83–88 (1983).
[CrossRef]

B. R. Sanders, N. E. Bergen, “Workshop on Mass, Momentum, and Energy Exchange in Combusting Sprays: Droplet Studies,” Report SAND89-8442, Sandia National Laboratories, Livermore, CA (28–29 Mar. 1988).

Shield, T. W.

T. W. Shield, D. B. Bogy, F. E. Talke, “Drop Formation by DOD Ink Jet Nozzles: a Comparison of Experiment and Numerical Simulation,” IBM J. Res. Dev. 31, 96–110 (1987).
[CrossRef]

Sirignano, W. A.

G. Patnaik, W. A. Sirignano, H. A. Dwyer, B. R. Sanders, “A Numerical Technique for the Solution of a Vaporizing Fuel Droplet,” Prog. Astronaut. Aeronaut. 105, 253–266 (1986).

S. K. Aggarwal, A. Y. Tong, W. A. Sirignano, “A Comparison of Vaporization Models in Spray Combustion,” AIAA J. 22, 1448–1457 (1984).
[CrossRef]

B. Abramzon, W. A. Sirignano, “Droplet Vaporization Model for Spray Combustion Calculations,” paper presented at the AIAA Twenty-Sixth Aerospace Sciences Meeting, Reno (11–14 Jan. 1988), paper 88-0636.

Srinivasan, V.

V. Srinivasan, R. C. Aiken, “Mass Transfer to Droplets Formed by the Controlled Breakup of a Cylindrical Jet—Physical Absorption,” Chem. Eng. Sci. 43, 3141–3150 (1988).
[CrossRef]

Sturgess, G. J.

G. J. Sturgess, S. A. Syed, K. R. McMasnus, “Calculation of a Hollow-Cone Liquid Spray in a Uniform Air Stream,” in Technical Digest, AIAA/SAE/ASME Twentieth Propulsion Conference, Cincinnati (11–13 June 1984), paper AIAA 84-1322.

Sundararajan, T.

G. Gogos, S. S. Sadhal, P. S. Ayyaswamy, T. Sundararajan, “Thin-Flame Theory for the Combustion of a Moving Liquid Drop: Effects Due to Variable Density,” J. Fluid Mech. 171, 121–144 (1986).
[CrossRef]

Syed, S. A.

G. J. Sturgess, S. A. Syed, K. R. McMasnus, “Calculation of a Hollow-Cone Liquid Spray in a Uniform Air Stream,” in Technical Digest, AIAA/SAE/ASME Twentieth Propulsion Conference, Cincinnati (11–13 June 1984), paper AIAA 84-1322.

Talke, F. E.

T. W. Shield, D. B. Bogy, F. E. Talke, “Drop Formation by DOD Ink Jet Nozzles: a Comparison of Experiment and Numerical Simulation,” IBM J. Res. Dev. 31, 96–110 (1987).
[CrossRef]

Tong, A. Y.

S. K. Aggarwal, A. Y. Tong, W. A. Sirignano, “A Comparison of Vaporization Models in Spray Combustion,” AIAA J. 22, 1448–1457 (1984).
[CrossRef]

Weber, M. E.

R. Clift, J. R. Grace, M. E. Weber, Bubbles, Drops, and Particles (Academic, New York, 1978).

Winter, M.

L. A. Melton, M. Winter, unpublished data.

Zhang, J-Z.

AIAA J. (1)

S. K. Aggarwal, A. Y. Tong, W. A. Sirignano, “A Comparison of Vaporization Models in Spray Combustion,” AIAA J. 22, 1448–1457 (1984).
[CrossRef]

Appl. Opt. (1)

Chem. Eng. Sci. (1)

V. Srinivasan, R. C. Aiken, “Mass Transfer to Droplets Formed by the Controlled Breakup of a Cylindrical Jet—Physical Absorption,” Chem. Eng. Sci. 43, 3141–3150 (1988).
[CrossRef]

Comput. Fluids (1)

T-H. Chang, J. N. Chung, “The Effect of a Stagnant Surfactant Cap on the Transport Mechanisms of a Condensing Droplet in a High Reynolds Number Flow,” Comput. Fluids 15, 1–11 (1987).
[CrossRef]

IBM J. Res. Dev. (1)

T. W. Shield, D. B. Bogy, F. E. Talke, “Drop Formation by DOD Ink Jet Nozzles: a Comparison of Experiment and Numerical Simulation,” IBM J. Res. Dev. 31, 96–110 (1987).
[CrossRef]

Int. Comm. Heat Mass Transfer (1)

G. Ryskin, “Heat or Mass Transfer from a Moving Drop—Some Approximate Relations for the Nusselt Number,” Int. Comm. Heat Mass Transfer 14, 741–749 (1987).
[CrossRef]

J. Fluid Mech. (1)

D. L. R. Oliver, J. N. Chung, “Steady Flows Inside and Around a Fluid Sphere at Low Reynolds Numbers,” J. Fluid Mech. 154, 215–230 (1985).
[CrossRef]

J. Fluid Mech. (1)

G. Gogos, S. S. Sadhal, P. S. Ayyaswamy, T. Sundararajan, “Thin-Flame Theory for the Combustion of a Moving Liquid Drop: Effects Due to Variable Density,” J. Fluid Mech. 171, 121–144 (1986).
[CrossRef]

J. Fluids Eng. (1)

H. A. Dwyer, R. J. Kee, P. K. Barr, B. R. Sanders, “Transient Droplet Heating at High Peclet Number,” J. Fluids Eng. 105, 83–88 (1983).
[CrossRef]

Prog. Astronaut. Aeronaut. (1)

G. Patnaik, W. A. Sirignano, H. A. Dwyer, B. R. Sanders, “A Numerical Technique for the Solution of a Vaporizing Fuel Droplet,” Prog. Astronaut. Aeronaut. 105, 253–266 (1986).

Prog. Energy Combust. Sci. (1)

C. K. Law, “Recent Advances in Droplet Vaporization and Combustion,” Prog. Energy Combust. Sci. 8, 171–201 (1982).
[CrossRef]

Other (8)

B. R. Sanders, N. E. Bergen, “Workshop on Mass, Momentum, and Energy Exchange in Combusting Sprays: Droplet Studies,” Report SAND89-8442, Sandia National Laboratories, Livermore, CA (28–29 Mar. 1988).

A. A. Amsden, P. J. O’Rourke, T. D. Butler, “KIVA-II: a Computer Program for Chemically Reactive Flows with Sprays,” Technical Report LA-11560-MS, Los Alamos National Laboratory (May1989).

G. J. Sturgess, S. A. Syed, K. R. McMasnus, “Calculation of a Hollow-Cone Liquid Spray in a Uniform Air Stream,” in Technical Digest, AIAA/SAE/ASME Twentieth Propulsion Conference, Cincinnati (11–13 June 1984), paper AIAA 84-1322.

B. Abramzon, W. A. Sirignano, “Droplet Vaporization Model for Spray Combustion Calculations,” paper presented at the AIAA Twenty-Sixth Aerospace Sciences Meeting, Reno (11–14 Jan. 1988), paper 88-0636.

R. Clift, J. R. Grace, M. E. Weber, Bubbles, Drops, and Particles (Academic, New York, 1978).

I. B. Berlman, Fluorescence Spectra of Aromatic Molecules (Academic, New York, 1971).

L. A. Melton, M. Winter, unpublished data.

E. Marschall, “Investigation of Velocity Distribution During Drop Formation and Release,” Final Report, National Science Foundation Grant CME 79-18399 (1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic diagram of the droplet imaging apparatus.

Fig. 2
Fig. 2

Background-corrected images of a 330-μm droplet falling into (a) nitrogen and (b) oxygen.

Fig. 3
Fig. 3

Background-corrected images of a 450-μm droplet falling into (a) nitrogen and (b) oxygen; (c) pixel-by-pixel ratio of image (b) to image (a).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I o / I = 1 + K ( O 2 ) ,

Metrics