## Abstract

Measurement of the refractive index of a simple negative lens is presented. The technique is also useful for measuring the refractive index of a simple convex and zero power lens.

© 1990 Optical Society of America

Full Article |

PDF Article
### Equations (6)

Equations on this page are rendered with MathJax. Learn more.

(1)
$$n=\frac{t(R+{t}_{a})}{{t}_{a}(R+t)}.$$
(2)
$$n=\frac{t(R-{t}_{a})}{{t}_{a}(R-t)}.$$
(4)
$$dn=\pm \left\{\left|\frac{(n-1)t}{R(R+t)}dR\right|+\left|\frac{nR}{t(R+t)}dt\right|+\left|\frac{-{[n(R+t)-t]}^{2}}{tR(R+t)}{dt}_{a}\right|\right\}.$$
(5)
$$dn=\pm \left\{\left|\frac{-(n-1)t}{R(R-t)}dR\right|+\left|\frac{nR}{t(R-t)}dt\right|+\left|\frac{-{[n(R-t)+t]}^{2}}{tR(R-t)}{dt}_{a}\right|\right\}.$$
(6)
$$\frac{1}{f}=(n-1)\left[\frac{1}{{R}_{1}}-\frac{1}{{R}_{2}}+\frac{t(n-1)}{n{R}_{1}{R}_{2}}\right],$$