Abstract

Efficient differentiation between the left and right circular polarization of soft x-ray synchrotron radiation is achievable by doubling the number of prefocusing mirrors in a Dragon monochromator. The design also permits easy reversion to conventional linear polarization operation.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Krinsky, M. L. Perlman, R. E. Watson, “Characteristics of Synchrotron Radiation and of Its Sources,” in Handbook on Synchrotron Radiation, Vol. 1a, E. E. Koch, Ed. (North-Holland, Amsterdam, 1983), pp. 65–171.
  2. U. Heinzmann, “Angle-, Energy- and Spin-Resolved Photoelectron Emission Using Circularly Polarized Synchrotron Radiation,” Phys. Scr. T17, 77–88 (1987) and references therein.
    [CrossRef]
  3. J. Garbe, J. Kirschner, “Spin-Dependent Photoemission Intensities from Platinum(111),” Phys. Rev. B 39, 9859–9864 (1989) and references therein.
    [CrossRef]
  4. G. Schutz, R. Frahm, R. Wienke, W. Wilhelm, W. Wagner, P. Kienle, “Spin-Dependent K- and L-Absorption Measurements,” Rev. Sci. Instrum. 60, 1661–1665 (1989) and references therein.
    [CrossRef]
  5. C. T. Chen, F. Sette, Y. Ma, S. Modesti, “Soft X-ray Magnetic Circular Dichroism at the L2,3 Edges of Nickel,” submitted to Phys. Rev. B.
  6. U. Heinzmann, “Spin Polarized Photoelectrons from Atoms and Molecules,” Appl. Opt. 19, 4087–4091 (1980).
    [CrossRef] [PubMed]
  7. C. T. Chen, “Concept and Design Procedure for Cylindrical Element Monochromators for Synchrotron Radiation,” Nucl. Instrum. Methods A 256, 595–604 (1987); C. T. Chen, F. Sette, “Performance of the Dragon Soft X-ray Beamline,” Rev. Sci. Instrum. 60, 1616–1621 (1989).
    [CrossRef]

1989 (2)

J. Garbe, J. Kirschner, “Spin-Dependent Photoemission Intensities from Platinum(111),” Phys. Rev. B 39, 9859–9864 (1989) and references therein.
[CrossRef]

G. Schutz, R. Frahm, R. Wienke, W. Wilhelm, W. Wagner, P. Kienle, “Spin-Dependent K- and L-Absorption Measurements,” Rev. Sci. Instrum. 60, 1661–1665 (1989) and references therein.
[CrossRef]

1987 (2)

U. Heinzmann, “Angle-, Energy- and Spin-Resolved Photoelectron Emission Using Circularly Polarized Synchrotron Radiation,” Phys. Scr. T17, 77–88 (1987) and references therein.
[CrossRef]

C. T. Chen, “Concept and Design Procedure for Cylindrical Element Monochromators for Synchrotron Radiation,” Nucl. Instrum. Methods A 256, 595–604 (1987); C. T. Chen, F. Sette, “Performance of the Dragon Soft X-ray Beamline,” Rev. Sci. Instrum. 60, 1616–1621 (1989).
[CrossRef]

1980 (1)

Chen, C. T.

C. T. Chen, “Concept and Design Procedure for Cylindrical Element Monochromators for Synchrotron Radiation,” Nucl. Instrum. Methods A 256, 595–604 (1987); C. T. Chen, F. Sette, “Performance of the Dragon Soft X-ray Beamline,” Rev. Sci. Instrum. 60, 1616–1621 (1989).
[CrossRef]

C. T. Chen, F. Sette, Y. Ma, S. Modesti, “Soft X-ray Magnetic Circular Dichroism at the L2,3 Edges of Nickel,” submitted to Phys. Rev. B.

Frahm, R.

G. Schutz, R. Frahm, R. Wienke, W. Wilhelm, W. Wagner, P. Kienle, “Spin-Dependent K- and L-Absorption Measurements,” Rev. Sci. Instrum. 60, 1661–1665 (1989) and references therein.
[CrossRef]

Garbe, J.

J. Garbe, J. Kirschner, “Spin-Dependent Photoemission Intensities from Platinum(111),” Phys. Rev. B 39, 9859–9864 (1989) and references therein.
[CrossRef]

Heinzmann, U.

U. Heinzmann, “Angle-, Energy- and Spin-Resolved Photoelectron Emission Using Circularly Polarized Synchrotron Radiation,” Phys. Scr. T17, 77–88 (1987) and references therein.
[CrossRef]

U. Heinzmann, “Spin Polarized Photoelectrons from Atoms and Molecules,” Appl. Opt. 19, 4087–4091 (1980).
[CrossRef] [PubMed]

Kienle, P.

G. Schutz, R. Frahm, R. Wienke, W. Wilhelm, W. Wagner, P. Kienle, “Spin-Dependent K- and L-Absorption Measurements,” Rev. Sci. Instrum. 60, 1661–1665 (1989) and references therein.
[CrossRef]

Kirschner, J.

J. Garbe, J. Kirschner, “Spin-Dependent Photoemission Intensities from Platinum(111),” Phys. Rev. B 39, 9859–9864 (1989) and references therein.
[CrossRef]

Krinsky, S.

S. Krinsky, M. L. Perlman, R. E. Watson, “Characteristics of Synchrotron Radiation and of Its Sources,” in Handbook on Synchrotron Radiation, Vol. 1a, E. E. Koch, Ed. (North-Holland, Amsterdam, 1983), pp. 65–171.

Ma, Y.

C. T. Chen, F. Sette, Y. Ma, S. Modesti, “Soft X-ray Magnetic Circular Dichroism at the L2,3 Edges of Nickel,” submitted to Phys. Rev. B.

Modesti, S.

C. T. Chen, F. Sette, Y. Ma, S. Modesti, “Soft X-ray Magnetic Circular Dichroism at the L2,3 Edges of Nickel,” submitted to Phys. Rev. B.

Perlman, M. L.

S. Krinsky, M. L. Perlman, R. E. Watson, “Characteristics of Synchrotron Radiation and of Its Sources,” in Handbook on Synchrotron Radiation, Vol. 1a, E. E. Koch, Ed. (North-Holland, Amsterdam, 1983), pp. 65–171.

Schutz, G.

G. Schutz, R. Frahm, R. Wienke, W. Wilhelm, W. Wagner, P. Kienle, “Spin-Dependent K- and L-Absorption Measurements,” Rev. Sci. Instrum. 60, 1661–1665 (1989) and references therein.
[CrossRef]

Sette, F.

C. T. Chen, F. Sette, Y. Ma, S. Modesti, “Soft X-ray Magnetic Circular Dichroism at the L2,3 Edges of Nickel,” submitted to Phys. Rev. B.

Wagner, W.

G. Schutz, R. Frahm, R. Wienke, W. Wilhelm, W. Wagner, P. Kienle, “Spin-Dependent K- and L-Absorption Measurements,” Rev. Sci. Instrum. 60, 1661–1665 (1989) and references therein.
[CrossRef]

Watson, R. E.

S. Krinsky, M. L. Perlman, R. E. Watson, “Characteristics of Synchrotron Radiation and of Its Sources,” in Handbook on Synchrotron Radiation, Vol. 1a, E. E. Koch, Ed. (North-Holland, Amsterdam, 1983), pp. 65–171.

Wienke, R.

G. Schutz, R. Frahm, R. Wienke, W. Wilhelm, W. Wagner, P. Kienle, “Spin-Dependent K- and L-Absorption Measurements,” Rev. Sci. Instrum. 60, 1661–1665 (1989) and references therein.
[CrossRef]

Wilhelm, W.

G. Schutz, R. Frahm, R. Wienke, W. Wilhelm, W. Wagner, P. Kienle, “Spin-Dependent K- and L-Absorption Measurements,” Rev. Sci. Instrum. 60, 1661–1665 (1989) and references therein.
[CrossRef]

Appl. Opt. (1)

Nucl. Instrum. Methods A (1)

C. T. Chen, “Concept and Design Procedure for Cylindrical Element Monochromators for Synchrotron Radiation,” Nucl. Instrum. Methods A 256, 595–604 (1987); C. T. Chen, F. Sette, “Performance of the Dragon Soft X-ray Beamline,” Rev. Sci. Instrum. 60, 1616–1621 (1989).
[CrossRef]

Phys. Rev. B (1)

J. Garbe, J. Kirschner, “Spin-Dependent Photoemission Intensities from Platinum(111),” Phys. Rev. B 39, 9859–9864 (1989) and references therein.
[CrossRef]

Phys. Scr. (1)

U. Heinzmann, “Angle-, Energy- and Spin-Resolved Photoelectron Emission Using Circularly Polarized Synchrotron Radiation,” Phys. Scr. T17, 77–88 (1987) and references therein.
[CrossRef]

Rev. Sci. Instrum. (1)

G. Schutz, R. Frahm, R. Wienke, W. Wilhelm, W. Wagner, P. Kienle, “Spin-Dependent K- and L-Absorption Measurements,” Rev. Sci. Instrum. 60, 1661–1665 (1989) and references therein.
[CrossRef]

Other (2)

C. T. Chen, F. Sette, Y. Ma, S. Modesti, “Soft X-ray Magnetic Circular Dichroism at the L2,3 Edges of Nickel,” submitted to Phys. Rev. B.

S. Krinsky, M. L. Perlman, R. E. Watson, “Characteristics of Synchrotron Radiation and of Its Sources,” in Handbook on Synchrotron Radiation, Vol. 1a, E. E. Koch, Ed. (North-Holland, Amsterdam, 1983), pp. 65–171.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Modification of the existing Dragon monochromator to select circularly polarized synchrotron radiation above and below the orbital plane of the storage ring. Concerted motions of the VFM and entrance slit are required, so that the alternation between left and right circular polarization is a cumbersome procedure.

Fig. 2
Fig. 2

Layout of the double-headed Dragon: (a) separation of the beam by identical pairs (HFM1, VFM1) and (HFM2, VFM2) of horizontal and vertical focusing mirrors; (b) circular polarization mode in which VFM1 (VFM2) intercept radiation below (above) the orbital plane; (c) conventional mode with both VFMs in the orbital plane.

Metrics