Abstract

A varied-space grating mounted to both rotate and translate constitutes a practical single element fixed slit monochromator which is in focus at all wavelengths.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. A. Rowland, “On Concave Gratings for Optical Purposes,” Philos. Mag. 16, 197–210 (1883).
    [CrossRef]
  2. F. C. Brown, R. C. Bachrach, N. Lien, “The SSRL Ultrahigh Vacuum Grazing Incidence Monochromator: Design Characteristics and Operating Experience,” Nucl. Instrum. Methods 152, 73–79 (1978).
    [CrossRef]
  3. M. C. Hettrick, “High Resolution Gratings for the Soft X-Ray,” Nucl. Instrum. Methods A266, 404–413 (1988).
  4. M. Itou, T. Harada, T. Kita, “Soft X-Ray Monochromator with a Varied-Space Plane Grating for Synchrotron Radiation: Design and Evaluation,” Appl. Opt. 28, 146–152 (1989).
    [CrossRef]
  5. H. Dietrich, C. Kunz, “A Grazing Incidence Vacuum Ultraviolet Monochromator with Fixed Exit Slit,” Rev. Sci. Instrum. 43, 434–442 (1972).
    [CrossRef]
  6. W. R. Hunter, R. T. Williams, J. C. Rife, J. P. Kirkland, M. N. Kabler, “A Grating/Crystal Monochromator for the Spectral Range 5 eV to 5 KeV,” Nucl. Instrum. Methods 195, 141–153 (1982).
    [CrossRef]
  7. H. Petersen, “The Plane Grating and Elliptical Mirror: A New Optical Configuration for Monochromators,” Opt. Commun. 40, 402–406 (1982).
    [CrossRef]
  8. T. Namioka, “Theory of the Concave Grating III. Seya-Namioka Monochromator,” J. Opt. Soc. Am. 49, 951–961 (1959).
    [CrossRef]
  9. M. C. Hettrick, J. H. Underwood, “Stigmatic High Throughput Monochromator for Soft X Rays,” Appl. Opt. 25, 4228–4231 (1986).
    [CrossRef] [PubMed]
  10. D. E. Aspnes, “High-Efficiency Concave-Grating Monochromator with Wavelength-Independent Focusing Characteristics,” J. Opt. Soc. Am. 72, 1056–1061 (1982).
    [CrossRef]

1989 (1)

1988 (1)

M. C. Hettrick, “High Resolution Gratings for the Soft X-Ray,” Nucl. Instrum. Methods A266, 404–413 (1988).

1986 (1)

1982 (3)

D. E. Aspnes, “High-Efficiency Concave-Grating Monochromator with Wavelength-Independent Focusing Characteristics,” J. Opt. Soc. Am. 72, 1056–1061 (1982).
[CrossRef]

W. R. Hunter, R. T. Williams, J. C. Rife, J. P. Kirkland, M. N. Kabler, “A Grating/Crystal Monochromator for the Spectral Range 5 eV to 5 KeV,” Nucl. Instrum. Methods 195, 141–153 (1982).
[CrossRef]

H. Petersen, “The Plane Grating and Elliptical Mirror: A New Optical Configuration for Monochromators,” Opt. Commun. 40, 402–406 (1982).
[CrossRef]

1978 (1)

F. C. Brown, R. C. Bachrach, N. Lien, “The SSRL Ultrahigh Vacuum Grazing Incidence Monochromator: Design Characteristics and Operating Experience,” Nucl. Instrum. Methods 152, 73–79 (1978).
[CrossRef]

1972 (1)

H. Dietrich, C. Kunz, “A Grazing Incidence Vacuum Ultraviolet Monochromator with Fixed Exit Slit,” Rev. Sci. Instrum. 43, 434–442 (1972).
[CrossRef]

1959 (1)

1883 (1)

H. A. Rowland, “On Concave Gratings for Optical Purposes,” Philos. Mag. 16, 197–210 (1883).
[CrossRef]

Aspnes, D. E.

Bachrach, R. C.

F. C. Brown, R. C. Bachrach, N. Lien, “The SSRL Ultrahigh Vacuum Grazing Incidence Monochromator: Design Characteristics and Operating Experience,” Nucl. Instrum. Methods 152, 73–79 (1978).
[CrossRef]

Brown, F. C.

F. C. Brown, R. C. Bachrach, N. Lien, “The SSRL Ultrahigh Vacuum Grazing Incidence Monochromator: Design Characteristics and Operating Experience,” Nucl. Instrum. Methods 152, 73–79 (1978).
[CrossRef]

Dietrich, H.

H. Dietrich, C. Kunz, “A Grazing Incidence Vacuum Ultraviolet Monochromator with Fixed Exit Slit,” Rev. Sci. Instrum. 43, 434–442 (1972).
[CrossRef]

Harada, T.

Hettrick, M. C.

M. C. Hettrick, “High Resolution Gratings for the Soft X-Ray,” Nucl. Instrum. Methods A266, 404–413 (1988).

M. C. Hettrick, J. H. Underwood, “Stigmatic High Throughput Monochromator for Soft X Rays,” Appl. Opt. 25, 4228–4231 (1986).
[CrossRef] [PubMed]

Hunter, W. R.

W. R. Hunter, R. T. Williams, J. C. Rife, J. P. Kirkland, M. N. Kabler, “A Grating/Crystal Monochromator for the Spectral Range 5 eV to 5 KeV,” Nucl. Instrum. Methods 195, 141–153 (1982).
[CrossRef]

Itou, M.

Kabler, M. N.

W. R. Hunter, R. T. Williams, J. C. Rife, J. P. Kirkland, M. N. Kabler, “A Grating/Crystal Monochromator for the Spectral Range 5 eV to 5 KeV,” Nucl. Instrum. Methods 195, 141–153 (1982).
[CrossRef]

Kirkland, J. P.

W. R. Hunter, R. T. Williams, J. C. Rife, J. P. Kirkland, M. N. Kabler, “A Grating/Crystal Monochromator for the Spectral Range 5 eV to 5 KeV,” Nucl. Instrum. Methods 195, 141–153 (1982).
[CrossRef]

Kita, T.

Kunz, C.

H. Dietrich, C. Kunz, “A Grazing Incidence Vacuum Ultraviolet Monochromator with Fixed Exit Slit,” Rev. Sci. Instrum. 43, 434–442 (1972).
[CrossRef]

Lien, N.

F. C. Brown, R. C. Bachrach, N. Lien, “The SSRL Ultrahigh Vacuum Grazing Incidence Monochromator: Design Characteristics and Operating Experience,” Nucl. Instrum. Methods 152, 73–79 (1978).
[CrossRef]

Namioka, T.

Petersen, H.

H. Petersen, “The Plane Grating and Elliptical Mirror: A New Optical Configuration for Monochromators,” Opt. Commun. 40, 402–406 (1982).
[CrossRef]

Rife, J. C.

W. R. Hunter, R. T. Williams, J. C. Rife, J. P. Kirkland, M. N. Kabler, “A Grating/Crystal Monochromator for the Spectral Range 5 eV to 5 KeV,” Nucl. Instrum. Methods 195, 141–153 (1982).
[CrossRef]

Rowland, H. A.

H. A. Rowland, “On Concave Gratings for Optical Purposes,” Philos. Mag. 16, 197–210 (1883).
[CrossRef]

Underwood, J. H.

Williams, R. T.

W. R. Hunter, R. T. Williams, J. C. Rife, J. P. Kirkland, M. N. Kabler, “A Grating/Crystal Monochromator for the Spectral Range 5 eV to 5 KeV,” Nucl. Instrum. Methods 195, 141–153 (1982).
[CrossRef]

Appl. Opt. (2)

J. Opt. Soc. Am. (2)

Nucl. Instrum. Methods (3)

F. C. Brown, R. C. Bachrach, N. Lien, “The SSRL Ultrahigh Vacuum Grazing Incidence Monochromator: Design Characteristics and Operating Experience,” Nucl. Instrum. Methods 152, 73–79 (1978).
[CrossRef]

M. C. Hettrick, “High Resolution Gratings for the Soft X-Ray,” Nucl. Instrum. Methods A266, 404–413 (1988).

W. R. Hunter, R. T. Williams, J. C. Rife, J. P. Kirkland, M. N. Kabler, “A Grating/Crystal Monochromator for the Spectral Range 5 eV to 5 KeV,” Nucl. Instrum. Methods 195, 141–153 (1982).
[CrossRef]

Opt. Commun. (1)

H. Petersen, “The Plane Grating and Elliptical Mirror: A New Optical Configuration for Monochromators,” Opt. Commun. 40, 402–406 (1982).
[CrossRef]

Philos. Mag. (1)

H. A. Rowland, “On Concave Gratings for Optical Purposes,” Philos. Mag. 16, 197–210 (1883).
[CrossRef]

Rev. Sci. Instrum. (1)

H. Dietrich, C. Kunz, “A Grazing Incidence Vacuum Ultraviolet Monochromator with Fixed Exit Slit,” Rev. Sci. Instrum. 43, 434–442 (1972).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Basic optical configuration of the monochromator. The upper portion shows a section taken across the meridional plane of the grating. A reflection grating rotates about a fixed axis (open circle) while translating along its surface in the direction of its varied groove spacing. The fixed principal ray is indicated by dark lines. The grating position is drawn solid for a typical wavelength and dashed for two extreme wavelengths at opposite ends of the spectral range of a concave grating embodiment. The bottom portion is a top view of the grating surface, schematically showing the varied spacing.

Fig. 2
Fig. 2

Results of Fermat calculations using parameters for a grazing incidence monochromator: (a) first-order aberration of defocusing; (b) second-order aberration of coma; (c) third-order spherical aberration; and (d) grating surface translation. Curves 100–106 are for a classicial equally spaced spherical grating, which simply rotates about its pole to select the wavelength. Curves 400–406 are optimized for the new focusing condition, where a varied-space concave grating rotates about a fixed pole and translates along its ruled width. Given the same grating width, the new device exhibits a factor of 200 higher spectral resolution, limited only by spherical aberration. All aberrations are extrema (calculated from the edge of the grating aperture).

Fig. 3
Fig. 3

Measured line profiles of a prototype in-focus monochromator, employing a single spherical grating reflection. Typical slit widths were 5–10 μm. These traces are not plotted on the same scale; however, the measured FWHM is indicated for each profile. The full grating aperture of 45 mm was used for all traces, except for the top and bottom traces where the aperture was stopped to ~36 mm to provide a centered illumination.

Tables (1)

Tables Icon

Table I Predicted and Measured Monochromator Performancea

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

1 / σ = 1 / σ 0 + N 2 w + N 3 w 2 + N 4 w 3 + ,
Δ λ = ( σ 0 / m ) ( F 2 / w + / 2 3 F 3 w 2 + 2 F 4 w 3 + ) ,
1 / r = ( b 2 - 4 a c - b ) / ( 2 a R ) ,
1 / r = δ / r - / R ,
N 2 = ( T 1 + T 1 ) / ( m λ 1 ) ,
N 3 = / 2 3 [ T 1 ( sin α 1 ) / r - T 1 ( sin β 1 ) r ] / ( m λ 1 ) ,
a = γ sin α 1 cos 2 α 1 - sin α 2 cos 2 α 2 - γ δ 2 sin β 1 cos 2 β 1 + δ 2 sin β 2 cos 2 β 2 ,
b = - γ sin α 1 cos α 1 + sin α 2 cos α 2 + 2 γ δ sin β 1 cos 2 β 1 - 2 δ sin β 2 cos 2 β 2 + γ δ sin β 1 cos β 1 - δ sin β 2 cos β 2 ,
c = - γ 2 sin β 1 cos 2 β 1 + 2 sin β 2 cos 2 β 2 - γ sin β 1 cos β 1 + sin β 2 cos β 2 ,
δ = ( γ cos 2 α 1 - cos 2 α 2 ) / ( cos 2 β 2 - γ cos 2 β 1 ) ,
= [ γ ( cos α 1 + cos β 1 ) - ( cos α 2 + cos β 2 ) ] / ( cos 2 β 2 - γ cos 2 β 1 ) ,
γ = λ 2 / λ 1 ,
w w * = w - Δ w ,
1 / σ 0 1 / σ 0 * = 1 / σ 0 ( 1 - ½ ϕ 2 ) + N 2 Δ w ( 1 - ϕ 2 ) + N 3 Δ w 2 + N 4 Δ w 3 ,
N 2 N 2 * = - ϕ / ( R σ 0 ) + N 2 ( 1 - 2 ϕ 2 ) + 2 N 3 Δ w + 3 N 4 Δ w 2 ,
N 3 N 3 * = - ϕ 2 / ( 4 R 2 σ 0 ) - / 2 3 N 2 ( 1 + / 9 2 ϕ 2 ) ϕ / R + N 3 ( 1 + ½ ϕ 2 ) + 3 N 4 ( 1 + ϕ 2 ) Δ w ,
N 4 N 4 * = - ϕ / R 3 σ 0 ) - / 3 4 N 2 ( ϕ / R ) 2 + / 3 4 N 3 ϕ / R + N 4 ( 1 + 2 ϕ 2 ) ,
ϕ = arcsin ( Δ w / R ) ,

Metrics