Abstract

An electronic laser controller, based on a computer vision system, has been developed for automatic mode and power control of a high powered CO2 laser. The cross-sectional image of a sample of the output beam is continually analyzed and used to servo regulate both the laser cavity and the excitation level of the discharge. The technique stabilizes average laser output power to within 4%, while maintaining the best output power distribution achievable by the particular laser. Control system design also provides important on-line beam intensity profile data to assist in maximization of operating efficiency.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Ohmine et al., “Improved Metal Processing with High Power CO2 Lasers, Part I—Welding and Cutting,” Proc. ICALEO 44, 253 (1984).
  2. E. Nakamuri et al., “Improved Metal Processing with High Power CO2 Lasers, Part II—Hardening,” Proc. ICALEO 44, 261 (1984).
  3. G. M. Eboo, A. E. Linemans, “Advances in Laser Cladding Process Technology,” Proc. Soc. Photo-Opt. Instrum. Eng. (1985).
  4. J. S. Foley, “Survey of Applications of High Power Lasers in Manufacturing,” Report No. R86-917261-1, United Technologies Research Center, East Hartford, CT (1986).
  5. G. E. Grotke et al., “A Parametric Study of Surface Transformation Hardening with High Power Lasers,” Report No. 84-9D4-SURFC-R1, Westinghouse Electric Corp., Pittsburgh, PA (1984).
  6. D. B. Snow et al., “Rapid Solidification Processing of Superalloys Using High Power Lasers,” in Proceedings, Fourth International Symposium on Superalloys, Seven Springs, PA (1980).
  7. J. W. Davis, “United Technologies Industrial Laser Systems in Production,” Seminar on Industrial Applications of Lasers, Eindhoven, The Netherlands (1984).
  8. Y. Arata, “Challenge to Laser Advanced Materials Processing,” in Proceedings, International Conference on Laser Advanced Materials Processing–Science and Applications, Osaka, Japan (1987).
  9. M. Moriyasu et al., “Adaptive Control for High-Speed and High-Quality Laser Cutting,” in Proceedings, Laser Welding, Machining and Materials Processing, ICALEO ’85 (1985), pp. 129–136.
  10. J. P. Reilly, “CO2 Electric Discharge Lasers: Present Status and Future Applications,” in Gas Flow and Chemical Lasers, J. F. Wendt, Ed. (Publisher, Location, 1979), pp. 129–143.
  11. I. J. Spalding, A. C. Selden, M. Mill, J. H. Megaw, B. A. Ward, “High Power CO2 Lasers,” in Proceedings, Seventh International Symposium on Gas Flow and Chemical Lasers (1988).
  12. V. E. Merchant, M. R. Cervenan, H. J. J. Seguin, “An Industrial Quality 20 kW Infrared Laser, in Proceedings, International Conference on Lasers ’85 (1985), pp. 642–646.
  13. A. J. B. Travis, “Laser Beam Diagnostic Equipment for On-line Use with Multikilowatt CO2 Lasers,” in Proceedings, Fifth International Symposium on Gas Flow and Chemical Lasers (1984), pp. 367–372.
  14. J. T. Knudtson, K. L. Ratzlaff, “Laser Beam Spatial Profile Analysis Using a Two-Dimensional Photodiode Array,” Rev. Sci. Instrum. 54, 856–860 (1983).
    [CrossRef]
  15. H. G. Heard, Laser Parameter Measurements Handbook (Wiley, New York, 1968).
  16. P. D. Austin, “High Power CO2 Laser Beam Diagnostics,” Proc. Soc. Photo-Opt. Instrum. Eng.232–235 (1986).
  17. G. C. Lim, W. M. Steen, “Laser Beam Analyser,” in Proceedings, First International Conference on Lasers in Manufacturing, Brighton, UK (1983), pp. 161–167.
  18. G. Sepold, P. O. Juptner, J. Telepski, “Measuring the Quality of High Power Laser Beams,” Proc. Soc. Photo-Opt. Instrum. Eng.167–169 (1986).
  19. J. E. Harvey, M. L. Scott, “Hole Grating Beam Sampler—Versatile High-Energy Laser Diagnostic Tool,” Opt. Eng. 20, 881–886 (1981).
  20. T. J. Ramos, D. R. Lim, A. C. Lingenfelter, “Low-Cost Laser Diagnostic System,” in Proceedings, Medicine and Biology Symposium, ICALEO’85 (1985), pp. 152–157.
  21. F. H. White, G. A. Needham, “High Energy Laser Diagnostics—A Review,” Proc. Soc. Photo-Opt. Instrum. Eng.2–15 (1982).
  22. F. Martin, J. G. Willman, “Video Graphics System Analyzes Laser Beam Profiles,” Laser Focus/Electro. Opt. (U.S.A.) 21, 104–111 (1985).
  23. M. Bass, Laser Materials Processing (North-Holland, New York, 1983).
  24. Y. Arata, Plasma, Electron and Laser Beam Technology (American Society for Metals, Metals Park, OH, 1986).
  25. A. K. Nath, H. J. J. Seguin, V. A. Seguin, “Optimization Studies of a Multikilowatt CO2 PIE Laser,” IEEE J. Quantum Electron QE-22, 268 (1986).
    [CrossRef]
  26. S. K. Nikumb, H. J. J. Seguin, V. A. Seguin, H. Reshef, “Gain and Saturation Parameters of a Multikilowatt CO2 Laser,” J. Phys., 911–916 (1987).
  27. S. K. Nikumb, H. J. J. Seguin, V. A. Seguin, R. Willis, H. Reshef, “High-Average Power-Pulsed Performance of a Multi-kilowatt PIE Laser,” IEEE J. Quantum Electron. QE-27, 1725–1735 (1989).
    [CrossRef]
  28. Z. Cheng, H. J. J. Seguin, S. K. Nikumb, V. A. Seguin, H. Reshef, “Annular-Coupled Concave–Convex Stable Resonator for Large-Volume High-Quality Energy Extraction,” Appl. Opt. 27, 836–842 (1988).
    [CrossRef] [PubMed]
  29. Thermal Image Plate for CO2 and Other Molecular Lasers, Optical Engineering, Inc., P.O. Box 696, Santa Rosa, CA 95402.
  30. Live! 2000, A-Squared Distributions, Inc., 6114 La Salle Ave., Suite 326, Oakland, CA 94611.
  31. Oriel Encoder Mike, Oriel Corp., 250 Long Beach Blvd., Stratford, CT 06497-0872.
  32. D. H. Ballard, C. M. Brown, Computer Vision (Prentice-Hall, Englewood Cliffs, NJ, 1982), pp. 121–148.

1989 (1)

S. K. Nikumb, H. J. J. Seguin, V. A. Seguin, R. Willis, H. Reshef, “High-Average Power-Pulsed Performance of a Multi-kilowatt PIE Laser,” IEEE J. Quantum Electron. QE-27, 1725–1735 (1989).
[CrossRef]

1988 (1)

1987 (1)

S. K. Nikumb, H. J. J. Seguin, V. A. Seguin, H. Reshef, “Gain and Saturation Parameters of a Multikilowatt CO2 Laser,” J. Phys., 911–916 (1987).

1986 (3)

A. K. Nath, H. J. J. Seguin, V. A. Seguin, “Optimization Studies of a Multikilowatt CO2 PIE Laser,” IEEE J. Quantum Electron QE-22, 268 (1986).
[CrossRef]

P. D. Austin, “High Power CO2 Laser Beam Diagnostics,” Proc. Soc. Photo-Opt. Instrum. Eng.232–235 (1986).

G. Sepold, P. O. Juptner, J. Telepski, “Measuring the Quality of High Power Laser Beams,” Proc. Soc. Photo-Opt. Instrum. Eng.167–169 (1986).

1985 (2)

F. Martin, J. G. Willman, “Video Graphics System Analyzes Laser Beam Profiles,” Laser Focus/Electro. Opt. (U.S.A.) 21, 104–111 (1985).

G. M. Eboo, A. E. Linemans, “Advances in Laser Cladding Process Technology,” Proc. Soc. Photo-Opt. Instrum. Eng. (1985).

1984 (2)

M. Ohmine et al., “Improved Metal Processing with High Power CO2 Lasers, Part I—Welding and Cutting,” Proc. ICALEO 44, 253 (1984).

E. Nakamuri et al., “Improved Metal Processing with High Power CO2 Lasers, Part II—Hardening,” Proc. ICALEO 44, 261 (1984).

1983 (1)

J. T. Knudtson, K. L. Ratzlaff, “Laser Beam Spatial Profile Analysis Using a Two-Dimensional Photodiode Array,” Rev. Sci. Instrum. 54, 856–860 (1983).
[CrossRef]

1982 (1)

F. H. White, G. A. Needham, “High Energy Laser Diagnostics—A Review,” Proc. Soc. Photo-Opt. Instrum. Eng.2–15 (1982).

1981 (1)

J. E. Harvey, M. L. Scott, “Hole Grating Beam Sampler—Versatile High-Energy Laser Diagnostic Tool,” Opt. Eng. 20, 881–886 (1981).

Arata, Y.

Y. Arata, “Challenge to Laser Advanced Materials Processing,” in Proceedings, International Conference on Laser Advanced Materials Processing–Science and Applications, Osaka, Japan (1987).

Y. Arata, Plasma, Electron and Laser Beam Technology (American Society for Metals, Metals Park, OH, 1986).

Austin, P. D.

P. D. Austin, “High Power CO2 Laser Beam Diagnostics,” Proc. Soc. Photo-Opt. Instrum. Eng.232–235 (1986).

Ballard, D. H.

D. H. Ballard, C. M. Brown, Computer Vision (Prentice-Hall, Englewood Cliffs, NJ, 1982), pp. 121–148.

Bass, M.

M. Bass, Laser Materials Processing (North-Holland, New York, 1983).

Brown, C. M.

D. H. Ballard, C. M. Brown, Computer Vision (Prentice-Hall, Englewood Cliffs, NJ, 1982), pp. 121–148.

Cervenan, M. R.

V. E. Merchant, M. R. Cervenan, H. J. J. Seguin, “An Industrial Quality 20 kW Infrared Laser, in Proceedings, International Conference on Lasers ’85 (1985), pp. 642–646.

Cheng, Z.

Davis, J. W.

J. W. Davis, “United Technologies Industrial Laser Systems in Production,” Seminar on Industrial Applications of Lasers, Eindhoven, The Netherlands (1984).

Eboo, G. M.

G. M. Eboo, A. E. Linemans, “Advances in Laser Cladding Process Technology,” Proc. Soc. Photo-Opt. Instrum. Eng. (1985).

Foley, J. S.

J. S. Foley, “Survey of Applications of High Power Lasers in Manufacturing,” Report No. R86-917261-1, United Technologies Research Center, East Hartford, CT (1986).

Grotke, G. E.

G. E. Grotke et al., “A Parametric Study of Surface Transformation Hardening with High Power Lasers,” Report No. 84-9D4-SURFC-R1, Westinghouse Electric Corp., Pittsburgh, PA (1984).

Harvey, J. E.

J. E. Harvey, M. L. Scott, “Hole Grating Beam Sampler—Versatile High-Energy Laser Diagnostic Tool,” Opt. Eng. 20, 881–886 (1981).

Heard, H. G.

H. G. Heard, Laser Parameter Measurements Handbook (Wiley, New York, 1968).

Juptner, P. O.

G. Sepold, P. O. Juptner, J. Telepski, “Measuring the Quality of High Power Laser Beams,” Proc. Soc. Photo-Opt. Instrum. Eng.167–169 (1986).

Knudtson, J. T.

J. T. Knudtson, K. L. Ratzlaff, “Laser Beam Spatial Profile Analysis Using a Two-Dimensional Photodiode Array,” Rev. Sci. Instrum. 54, 856–860 (1983).
[CrossRef]

Lim, D. R.

T. J. Ramos, D. R. Lim, A. C. Lingenfelter, “Low-Cost Laser Diagnostic System,” in Proceedings, Medicine and Biology Symposium, ICALEO’85 (1985), pp. 152–157.

Lim, G. C.

G. C. Lim, W. M. Steen, “Laser Beam Analyser,” in Proceedings, First International Conference on Lasers in Manufacturing, Brighton, UK (1983), pp. 161–167.

Linemans, A. E.

G. M. Eboo, A. E. Linemans, “Advances in Laser Cladding Process Technology,” Proc. Soc. Photo-Opt. Instrum. Eng. (1985).

Lingenfelter, A. C.

T. J. Ramos, D. R. Lim, A. C. Lingenfelter, “Low-Cost Laser Diagnostic System,” in Proceedings, Medicine and Biology Symposium, ICALEO’85 (1985), pp. 152–157.

Martin, F.

F. Martin, J. G. Willman, “Video Graphics System Analyzes Laser Beam Profiles,” Laser Focus/Electro. Opt. (U.S.A.) 21, 104–111 (1985).

Megaw, J. H.

I. J. Spalding, A. C. Selden, M. Mill, J. H. Megaw, B. A. Ward, “High Power CO2 Lasers,” in Proceedings, Seventh International Symposium on Gas Flow and Chemical Lasers (1988).

Merchant, V. E.

V. E. Merchant, M. R. Cervenan, H. J. J. Seguin, “An Industrial Quality 20 kW Infrared Laser, in Proceedings, International Conference on Lasers ’85 (1985), pp. 642–646.

Mill, M.

I. J. Spalding, A. C. Selden, M. Mill, J. H. Megaw, B. A. Ward, “High Power CO2 Lasers,” in Proceedings, Seventh International Symposium on Gas Flow and Chemical Lasers (1988).

Moriyasu, M.

M. Moriyasu et al., “Adaptive Control for High-Speed and High-Quality Laser Cutting,” in Proceedings, Laser Welding, Machining and Materials Processing, ICALEO ’85 (1985), pp. 129–136.

Nakamuri, E.

E. Nakamuri et al., “Improved Metal Processing with High Power CO2 Lasers, Part II—Hardening,” Proc. ICALEO 44, 261 (1984).

Nath, A. K.

A. K. Nath, H. J. J. Seguin, V. A. Seguin, “Optimization Studies of a Multikilowatt CO2 PIE Laser,” IEEE J. Quantum Electron QE-22, 268 (1986).
[CrossRef]

Needham, G. A.

F. H. White, G. A. Needham, “High Energy Laser Diagnostics—A Review,” Proc. Soc. Photo-Opt. Instrum. Eng.2–15 (1982).

Nikumb, S. K.

S. K. Nikumb, H. J. J. Seguin, V. A. Seguin, R. Willis, H. Reshef, “High-Average Power-Pulsed Performance of a Multi-kilowatt PIE Laser,” IEEE J. Quantum Electron. QE-27, 1725–1735 (1989).
[CrossRef]

Z. Cheng, H. J. J. Seguin, S. K. Nikumb, V. A. Seguin, H. Reshef, “Annular-Coupled Concave–Convex Stable Resonator for Large-Volume High-Quality Energy Extraction,” Appl. Opt. 27, 836–842 (1988).
[CrossRef] [PubMed]

S. K. Nikumb, H. J. J. Seguin, V. A. Seguin, H. Reshef, “Gain and Saturation Parameters of a Multikilowatt CO2 Laser,” J. Phys., 911–916 (1987).

Ohmine, M.

M. Ohmine et al., “Improved Metal Processing with High Power CO2 Lasers, Part I—Welding and Cutting,” Proc. ICALEO 44, 253 (1984).

Ramos, T. J.

T. J. Ramos, D. R. Lim, A. C. Lingenfelter, “Low-Cost Laser Diagnostic System,” in Proceedings, Medicine and Biology Symposium, ICALEO’85 (1985), pp. 152–157.

Ratzlaff, K. L.

J. T. Knudtson, K. L. Ratzlaff, “Laser Beam Spatial Profile Analysis Using a Two-Dimensional Photodiode Array,” Rev. Sci. Instrum. 54, 856–860 (1983).
[CrossRef]

Reilly, J. P.

J. P. Reilly, “CO2 Electric Discharge Lasers: Present Status and Future Applications,” in Gas Flow and Chemical Lasers, J. F. Wendt, Ed. (Publisher, Location, 1979), pp. 129–143.

Reshef, H.

S. K. Nikumb, H. J. J. Seguin, V. A. Seguin, R. Willis, H. Reshef, “High-Average Power-Pulsed Performance of a Multi-kilowatt PIE Laser,” IEEE J. Quantum Electron. QE-27, 1725–1735 (1989).
[CrossRef]

Z. Cheng, H. J. J. Seguin, S. K. Nikumb, V. A. Seguin, H. Reshef, “Annular-Coupled Concave–Convex Stable Resonator for Large-Volume High-Quality Energy Extraction,” Appl. Opt. 27, 836–842 (1988).
[CrossRef] [PubMed]

S. K. Nikumb, H. J. J. Seguin, V. A. Seguin, H. Reshef, “Gain and Saturation Parameters of a Multikilowatt CO2 Laser,” J. Phys., 911–916 (1987).

Scott, M. L.

J. E. Harvey, M. L. Scott, “Hole Grating Beam Sampler—Versatile High-Energy Laser Diagnostic Tool,” Opt. Eng. 20, 881–886 (1981).

Seguin, H. J. J.

S. K. Nikumb, H. J. J. Seguin, V. A. Seguin, R. Willis, H. Reshef, “High-Average Power-Pulsed Performance of a Multi-kilowatt PIE Laser,” IEEE J. Quantum Electron. QE-27, 1725–1735 (1989).
[CrossRef]

Z. Cheng, H. J. J. Seguin, S. K. Nikumb, V. A. Seguin, H. Reshef, “Annular-Coupled Concave–Convex Stable Resonator for Large-Volume High-Quality Energy Extraction,” Appl. Opt. 27, 836–842 (1988).
[CrossRef] [PubMed]

S. K. Nikumb, H. J. J. Seguin, V. A. Seguin, H. Reshef, “Gain and Saturation Parameters of a Multikilowatt CO2 Laser,” J. Phys., 911–916 (1987).

A. K. Nath, H. J. J. Seguin, V. A. Seguin, “Optimization Studies of a Multikilowatt CO2 PIE Laser,” IEEE J. Quantum Electron QE-22, 268 (1986).
[CrossRef]

V. E. Merchant, M. R. Cervenan, H. J. J. Seguin, “An Industrial Quality 20 kW Infrared Laser, in Proceedings, International Conference on Lasers ’85 (1985), pp. 642–646.

Seguin, V. A.

S. K. Nikumb, H. J. J. Seguin, V. A. Seguin, R. Willis, H. Reshef, “High-Average Power-Pulsed Performance of a Multi-kilowatt PIE Laser,” IEEE J. Quantum Electron. QE-27, 1725–1735 (1989).
[CrossRef]

Z. Cheng, H. J. J. Seguin, S. K. Nikumb, V. A. Seguin, H. Reshef, “Annular-Coupled Concave–Convex Stable Resonator for Large-Volume High-Quality Energy Extraction,” Appl. Opt. 27, 836–842 (1988).
[CrossRef] [PubMed]

S. K. Nikumb, H. J. J. Seguin, V. A. Seguin, H. Reshef, “Gain and Saturation Parameters of a Multikilowatt CO2 Laser,” J. Phys., 911–916 (1987).

A. K. Nath, H. J. J. Seguin, V. A. Seguin, “Optimization Studies of a Multikilowatt CO2 PIE Laser,” IEEE J. Quantum Electron QE-22, 268 (1986).
[CrossRef]

Selden, A. C.

I. J. Spalding, A. C. Selden, M. Mill, J. H. Megaw, B. A. Ward, “High Power CO2 Lasers,” in Proceedings, Seventh International Symposium on Gas Flow and Chemical Lasers (1988).

Sepold, G.

G. Sepold, P. O. Juptner, J. Telepski, “Measuring the Quality of High Power Laser Beams,” Proc. Soc. Photo-Opt. Instrum. Eng.167–169 (1986).

Snow, D. B.

D. B. Snow et al., “Rapid Solidification Processing of Superalloys Using High Power Lasers,” in Proceedings, Fourth International Symposium on Superalloys, Seven Springs, PA (1980).

Spalding, I. J.

I. J. Spalding, A. C. Selden, M. Mill, J. H. Megaw, B. A. Ward, “High Power CO2 Lasers,” in Proceedings, Seventh International Symposium on Gas Flow and Chemical Lasers (1988).

Steen, W. M.

G. C. Lim, W. M. Steen, “Laser Beam Analyser,” in Proceedings, First International Conference on Lasers in Manufacturing, Brighton, UK (1983), pp. 161–167.

Telepski, J.

G. Sepold, P. O. Juptner, J. Telepski, “Measuring the Quality of High Power Laser Beams,” Proc. Soc. Photo-Opt. Instrum. Eng.167–169 (1986).

Travis, A. J. B.

A. J. B. Travis, “Laser Beam Diagnostic Equipment for On-line Use with Multikilowatt CO2 Lasers,” in Proceedings, Fifth International Symposium on Gas Flow and Chemical Lasers (1984), pp. 367–372.

Ward, B. A.

I. J. Spalding, A. C. Selden, M. Mill, J. H. Megaw, B. A. Ward, “High Power CO2 Lasers,” in Proceedings, Seventh International Symposium on Gas Flow and Chemical Lasers (1988).

White, F. H.

F. H. White, G. A. Needham, “High Energy Laser Diagnostics—A Review,” Proc. Soc. Photo-Opt. Instrum. Eng.2–15 (1982).

Willis, R.

S. K. Nikumb, H. J. J. Seguin, V. A. Seguin, R. Willis, H. Reshef, “High-Average Power-Pulsed Performance of a Multi-kilowatt PIE Laser,” IEEE J. Quantum Electron. QE-27, 1725–1735 (1989).
[CrossRef]

Willman, J. G.

F. Martin, J. G. Willman, “Video Graphics System Analyzes Laser Beam Profiles,” Laser Focus/Electro. Opt. (U.S.A.) 21, 104–111 (1985).

Appl. Opt. (1)

IEEE J. Quantum Electron (1)

A. K. Nath, H. J. J. Seguin, V. A. Seguin, “Optimization Studies of a Multikilowatt CO2 PIE Laser,” IEEE J. Quantum Electron QE-22, 268 (1986).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. K. Nikumb, H. J. J. Seguin, V. A. Seguin, R. Willis, H. Reshef, “High-Average Power-Pulsed Performance of a Multi-kilowatt PIE Laser,” IEEE J. Quantum Electron. QE-27, 1725–1735 (1989).
[CrossRef]

J. Phys. (1)

S. K. Nikumb, H. J. J. Seguin, V. A. Seguin, H. Reshef, “Gain and Saturation Parameters of a Multikilowatt CO2 Laser,” J. Phys., 911–916 (1987).

Laser Focus/Electro. Opt. (U.S.A.) (1)

F. Martin, J. G. Willman, “Video Graphics System Analyzes Laser Beam Profiles,” Laser Focus/Electro. Opt. (U.S.A.) 21, 104–111 (1985).

Opt. Eng. (1)

J. E. Harvey, M. L. Scott, “Hole Grating Beam Sampler—Versatile High-Energy Laser Diagnostic Tool,” Opt. Eng. 20, 881–886 (1981).

Proc. ICALEO (2)

M. Ohmine et al., “Improved Metal Processing with High Power CO2 Lasers, Part I—Welding and Cutting,” Proc. ICALEO 44, 253 (1984).

E. Nakamuri et al., “Improved Metal Processing with High Power CO2 Lasers, Part II—Hardening,” Proc. ICALEO 44, 261 (1984).

Proc. Soc. Photo-Opt. Instrum. Eng. (4)

G. M. Eboo, A. E. Linemans, “Advances in Laser Cladding Process Technology,” Proc. Soc. Photo-Opt. Instrum. Eng. (1985).

G. Sepold, P. O. Juptner, J. Telepski, “Measuring the Quality of High Power Laser Beams,” Proc. Soc. Photo-Opt. Instrum. Eng.167–169 (1986).

F. H. White, G. A. Needham, “High Energy Laser Diagnostics—A Review,” Proc. Soc. Photo-Opt. Instrum. Eng.2–15 (1982).

P. D. Austin, “High Power CO2 Laser Beam Diagnostics,” Proc. Soc. Photo-Opt. Instrum. Eng.232–235 (1986).

Rev. Sci. Instrum. (1)

J. T. Knudtson, K. L. Ratzlaff, “Laser Beam Spatial Profile Analysis Using a Two-Dimensional Photodiode Array,” Rev. Sci. Instrum. 54, 856–860 (1983).
[CrossRef]

Other (19)

H. G. Heard, Laser Parameter Measurements Handbook (Wiley, New York, 1968).

G. C. Lim, W. M. Steen, “Laser Beam Analyser,” in Proceedings, First International Conference on Lasers in Manufacturing, Brighton, UK (1983), pp. 161–167.

T. J. Ramos, D. R. Lim, A. C. Lingenfelter, “Low-Cost Laser Diagnostic System,” in Proceedings, Medicine and Biology Symposium, ICALEO’85 (1985), pp. 152–157.

J. S. Foley, “Survey of Applications of High Power Lasers in Manufacturing,” Report No. R86-917261-1, United Technologies Research Center, East Hartford, CT (1986).

G. E. Grotke et al., “A Parametric Study of Surface Transformation Hardening with High Power Lasers,” Report No. 84-9D4-SURFC-R1, Westinghouse Electric Corp., Pittsburgh, PA (1984).

D. B. Snow et al., “Rapid Solidification Processing of Superalloys Using High Power Lasers,” in Proceedings, Fourth International Symposium on Superalloys, Seven Springs, PA (1980).

J. W. Davis, “United Technologies Industrial Laser Systems in Production,” Seminar on Industrial Applications of Lasers, Eindhoven, The Netherlands (1984).

Y. Arata, “Challenge to Laser Advanced Materials Processing,” in Proceedings, International Conference on Laser Advanced Materials Processing–Science and Applications, Osaka, Japan (1987).

M. Moriyasu et al., “Adaptive Control for High-Speed and High-Quality Laser Cutting,” in Proceedings, Laser Welding, Machining and Materials Processing, ICALEO ’85 (1985), pp. 129–136.

J. P. Reilly, “CO2 Electric Discharge Lasers: Present Status and Future Applications,” in Gas Flow and Chemical Lasers, J. F. Wendt, Ed. (Publisher, Location, 1979), pp. 129–143.

I. J. Spalding, A. C. Selden, M. Mill, J. H. Megaw, B. A. Ward, “High Power CO2 Lasers,” in Proceedings, Seventh International Symposium on Gas Flow and Chemical Lasers (1988).

V. E. Merchant, M. R. Cervenan, H. J. J. Seguin, “An Industrial Quality 20 kW Infrared Laser, in Proceedings, International Conference on Lasers ’85 (1985), pp. 642–646.

A. J. B. Travis, “Laser Beam Diagnostic Equipment for On-line Use with Multikilowatt CO2 Lasers,” in Proceedings, Fifth International Symposium on Gas Flow and Chemical Lasers (1984), pp. 367–372.

M. Bass, Laser Materials Processing (North-Holland, New York, 1983).

Y. Arata, Plasma, Electron and Laser Beam Technology (American Society for Metals, Metals Park, OH, 1986).

Thermal Image Plate for CO2 and Other Molecular Lasers, Optical Engineering, Inc., P.O. Box 696, Santa Rosa, CA 95402.

Live! 2000, A-Squared Distributions, Inc., 6114 La Salle Ave., Suite 326, Oakland, CA 94611.

Oriel Encoder Mike, Oriel Corp., 250 Long Beach Blvd., Stratford, CT 06497-0872.

D. H. Ballard, C. M. Brown, Computer Vision (Prentice-Hall, Englewood Cliffs, NJ, 1982), pp. 121–148.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Block diagram of the computer vision system for on-line laser and process control.

Fig. 2
Fig. 2

Folded path unstable resonator used in a 10-kW laser.

Fig. 3
Fig. 3

Image of an aligned 4-kW output beam on a thermal imaging screen.

Fig. 4
Fig. 4

Intensity profile of an aligned 4-kW output beam.

Fig. 5
Fig. 5

(a) Performance of the system with alignment and power control deactivated. (b) Performance of the system with alignment control activated, but power control deactivated. (c) Performance of the system with alignment and power control activated.

Fig. 6
Fig. 6

Time response and performance of the power control system.

Metrics