Abstract

The frequency of a AlGaAs diode laser has been locked to the 8118-cm-1(f3d2sM570)-20,218-cm-1 transition of UI at 826.20570 nm using the optogalvanic effect. A hollow cathode vapor generator has been utilized to produce a density of 1012 atoms/cm3 of uranium in vapor phase. The absolute frequency stability for a 10-min run was estimated to be better than 500 kHz P–P at an integration time of 1 s. This preliminary result shows that the rich optogalvanic spectrum of uranium can be efficiently used for the frequency-locking of semiconductor lasers.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, N. K. Dutta, Long-Wavelength Semiconductor Lasers (Van Nostrand Reinhold, New York, 1986), p. 6.
  2. T. Kimura, “Coherent Optical Fiber Transmission,” IEEE/OSA J. Lightwave Technol. LT-5, 414–428 (1987).
    [CrossRef]
  3. J. R. Brandenberger, “Hyperfine Splittings in 4p55p Configuration of 83Kr Using Saturated Absorption Laser Spectroscopy,” Phys. Rev. A 39, 64–68 (1989).
    [CrossRef] [PubMed]
  4. R. T. Ku, J. T. Verdeyen, B. E. Cherrington, L. Goldstein, “Plasma and Gaseous Diagnostics with a Tuned GaAs Laser Diode,” J. Appl. Phys. 43, 4579–4585 (1972).
    [CrossRef]
  5. M. Ohtsu, H. Kotani, H. Tagawa, “Spectral Measurements of NH3 and H2O for Pollutant Gas Monitoring by 1.5 μm InGaAsP/InP Lasers,” Jpn. J. Appl. Phys. 22, 1553–1557 (1983).
    [CrossRef]
  6. B. Villeneuve, N. Cyr, M. Têtu, “Use of Laser Diodes Locked to Atomic Transitions in Multiwavelength Coherent Communications,” Electron. Lett. 24, 736–737 (1988).
    [CrossRef]
  7. V. Jayaraman, E. S. Kintzer, J. G. Garcia, A. D. Pillsbury, “Design and Performance of an On-Satellite Laser Diagnostic System for a Free Space Optical Heterodyne Frequency-Shift-Keyed Communication System,” Proc. Soc. Photo-Opt. Instrum. Eng. 996, 84–91 (1988).
  8. M. Gehrtz, W. Lenth, A. T. Young, H. S. Johnston, “High-Frequency-Modulation Spectroscopy with a Lead-Salt Diode Laser,” Opt. Lett. 11, 132–134 (1986).
    [CrossRef] [PubMed]
  9. M. Hashimoto, M. Ohtsu, “Experiments on a Semiconductor Laser Pumped Rubidium Atomic Clock,” IEEE J. Quantum Electron. QE-23, 446–451 (1987).
    [CrossRef]
  10. M. Tetu, B. Villeneuve, N. Cyr, P. Tremblay, S. Theriault, M. Breton, “Multiwavelength Sources Using Laser Diodes Frequency-Locked to Atomic Resonances,” IEEE/OSA J. Lightwave Technol. LT-7, 1540–1547 (1989).
    [CrossRef]
  11. J. Blaise, L. J. Radziemski, “Energy Level of Neutral Atomic Uranium (UI),” J. Opt. Soc. Am. 66, 644–659 (1976).
    [CrossRef]
  12. J. G. Conway, E. F. Warden, “Isotope Shift of Uranium in the Infrared Region Between 1817 and 5598 cm−1,” J. Opt. Soc. Am. B 1, 788–794 (1984).
    [CrossRef]
  13. R. Engleman, B. A. Palmer, “Precision Isotope Shifts for the Heavy Elements. I. Neutral Uranium in the Visible and Near Infrared,” J. Opt. Soc. Am. 70, 308–317 (1980).
    [CrossRef]
  14. A. Giacchetti, J. Blaise, C. H. Corliss, R. Zalubas, “Proposed Secondary Wavelength Standards and Line Classifications in Thorium Spectra Between 0.9 and 3 μm,” J. Res. Natl. Bur. Stand. Sect. A 78, 247–281 (1974).
  15. D. W. Steinhaus et al., “Present Status of the Analysis of First and Second Spectra of Uranium (UI and UII) as Derived from Measurement of Optical Spectra,” Los Alamos Scientific Laboratory, Report LA-4501 (1971).
  16. B. A. Palmer, R. A. Keller, R. Engleman, “An Atlas of Uranium Emission Intensities in a Hollow Cathode Discharge,” Los Alamos Scientific Laboratory, Report LA-8251 (1980).
  17. B. A. Palmer, R. Engleman, “Atlas of the Thorium Spectrum,” Los Alamos Scientific Laboratory, Report LA-9615 (1983).
  18. Schuurmans, “On the Spectra of Neodynium and Uranium,” Physica 11, 419–425 (1946).
    [CrossRef]
  19. C. J. Sansonetti, K.-H. Weber, “Reference Lines for Dye-Laser Wave-Number Calibration in the Optogalvanic Spectra of Uranium and Thorium,” J. Opt. Soc. Am. B 1, 361–365 (1984).
    [CrossRef]
  20. J. M. Gagne, B. Mongeau, B. Leblanc, J. P. Saint-Dizier, P. Pianarosa, L. Bertrand, “Production de vapeur d’uranium par pulvérisation cathodique dans une cathode creuse: efficacités relatives des gaz Ne, Ar, Kr et concentrations à l’état 5L60,” Appl. Opt. 17, 2507–2510 (1978).
    [CrossRef] [PubMed]
  21. E. Langlois, J. M. Gagne, “Optogalvanic Detection of the Zeeman Effect in a Hollow-Cathode Discharge,” J. Opt. Soc. Am. B 4, 1222–1226 (1987).
    [CrossRef]

1989 (2)

J. R. Brandenberger, “Hyperfine Splittings in 4p55p Configuration of 83Kr Using Saturated Absorption Laser Spectroscopy,” Phys. Rev. A 39, 64–68 (1989).
[CrossRef] [PubMed]

M. Tetu, B. Villeneuve, N. Cyr, P. Tremblay, S. Theriault, M. Breton, “Multiwavelength Sources Using Laser Diodes Frequency-Locked to Atomic Resonances,” IEEE/OSA J. Lightwave Technol. LT-7, 1540–1547 (1989).
[CrossRef]

1988 (2)

B. Villeneuve, N. Cyr, M. Têtu, “Use of Laser Diodes Locked to Atomic Transitions in Multiwavelength Coherent Communications,” Electron. Lett. 24, 736–737 (1988).
[CrossRef]

V. Jayaraman, E. S. Kintzer, J. G. Garcia, A. D. Pillsbury, “Design and Performance of an On-Satellite Laser Diagnostic System for a Free Space Optical Heterodyne Frequency-Shift-Keyed Communication System,” Proc. Soc. Photo-Opt. Instrum. Eng. 996, 84–91 (1988).

1987 (3)

T. Kimura, “Coherent Optical Fiber Transmission,” IEEE/OSA J. Lightwave Technol. LT-5, 414–428 (1987).
[CrossRef]

M. Hashimoto, M. Ohtsu, “Experiments on a Semiconductor Laser Pumped Rubidium Atomic Clock,” IEEE J. Quantum Electron. QE-23, 446–451 (1987).
[CrossRef]

E. Langlois, J. M. Gagne, “Optogalvanic Detection of the Zeeman Effect in a Hollow-Cathode Discharge,” J. Opt. Soc. Am. B 4, 1222–1226 (1987).
[CrossRef]

1986 (1)

1984 (2)

1983 (1)

M. Ohtsu, H. Kotani, H. Tagawa, “Spectral Measurements of NH3 and H2O for Pollutant Gas Monitoring by 1.5 μm InGaAsP/InP Lasers,” Jpn. J. Appl. Phys. 22, 1553–1557 (1983).
[CrossRef]

1980 (1)

1978 (1)

1976 (1)

1974 (1)

A. Giacchetti, J. Blaise, C. H. Corliss, R. Zalubas, “Proposed Secondary Wavelength Standards and Line Classifications in Thorium Spectra Between 0.9 and 3 μm,” J. Res. Natl. Bur. Stand. Sect. A 78, 247–281 (1974).

1972 (1)

R. T. Ku, J. T. Verdeyen, B. E. Cherrington, L. Goldstein, “Plasma and Gaseous Diagnostics with a Tuned GaAs Laser Diode,” J. Appl. Phys. 43, 4579–4585 (1972).
[CrossRef]

1946 (1)

Schuurmans, “On the Spectra of Neodynium and Uranium,” Physica 11, 419–425 (1946).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, N. K. Dutta, Long-Wavelength Semiconductor Lasers (Van Nostrand Reinhold, New York, 1986), p. 6.

Bertrand, L.

Blaise, J.

J. Blaise, L. J. Radziemski, “Energy Level of Neutral Atomic Uranium (UI),” J. Opt. Soc. Am. 66, 644–659 (1976).
[CrossRef]

A. Giacchetti, J. Blaise, C. H. Corliss, R. Zalubas, “Proposed Secondary Wavelength Standards and Line Classifications in Thorium Spectra Between 0.9 and 3 μm,” J. Res. Natl. Bur. Stand. Sect. A 78, 247–281 (1974).

Brandenberger, J. R.

J. R. Brandenberger, “Hyperfine Splittings in 4p55p Configuration of 83Kr Using Saturated Absorption Laser Spectroscopy,” Phys. Rev. A 39, 64–68 (1989).
[CrossRef] [PubMed]

Breton, M.

M. Tetu, B. Villeneuve, N. Cyr, P. Tremblay, S. Theriault, M. Breton, “Multiwavelength Sources Using Laser Diodes Frequency-Locked to Atomic Resonances,” IEEE/OSA J. Lightwave Technol. LT-7, 1540–1547 (1989).
[CrossRef]

Cherrington, B. E.

R. T. Ku, J. T. Verdeyen, B. E. Cherrington, L. Goldstein, “Plasma and Gaseous Diagnostics with a Tuned GaAs Laser Diode,” J. Appl. Phys. 43, 4579–4585 (1972).
[CrossRef]

Conway, J. G.

Corliss, C. H.

A. Giacchetti, J. Blaise, C. H. Corliss, R. Zalubas, “Proposed Secondary Wavelength Standards and Line Classifications in Thorium Spectra Between 0.9 and 3 μm,” J. Res. Natl. Bur. Stand. Sect. A 78, 247–281 (1974).

Cyr, N.

M. Tetu, B. Villeneuve, N. Cyr, P. Tremblay, S. Theriault, M. Breton, “Multiwavelength Sources Using Laser Diodes Frequency-Locked to Atomic Resonances,” IEEE/OSA J. Lightwave Technol. LT-7, 1540–1547 (1989).
[CrossRef]

B. Villeneuve, N. Cyr, M. Têtu, “Use of Laser Diodes Locked to Atomic Transitions in Multiwavelength Coherent Communications,” Electron. Lett. 24, 736–737 (1988).
[CrossRef]

Dutta, N. K.

G. P. Agrawal, N. K. Dutta, Long-Wavelength Semiconductor Lasers (Van Nostrand Reinhold, New York, 1986), p. 6.

Engleman, R.

R. Engleman, B. A. Palmer, “Precision Isotope Shifts for the Heavy Elements. I. Neutral Uranium in the Visible and Near Infrared,” J. Opt. Soc. Am. 70, 308–317 (1980).
[CrossRef]

B. A. Palmer, R. A. Keller, R. Engleman, “An Atlas of Uranium Emission Intensities in a Hollow Cathode Discharge,” Los Alamos Scientific Laboratory, Report LA-8251 (1980).

B. A. Palmer, R. Engleman, “Atlas of the Thorium Spectrum,” Los Alamos Scientific Laboratory, Report LA-9615 (1983).

Gagne, J. M.

Garcia, J. G.

V. Jayaraman, E. S. Kintzer, J. G. Garcia, A. D. Pillsbury, “Design and Performance of an On-Satellite Laser Diagnostic System for a Free Space Optical Heterodyne Frequency-Shift-Keyed Communication System,” Proc. Soc. Photo-Opt. Instrum. Eng. 996, 84–91 (1988).

Gehrtz, M.

Giacchetti, A.

A. Giacchetti, J. Blaise, C. H. Corliss, R. Zalubas, “Proposed Secondary Wavelength Standards and Line Classifications in Thorium Spectra Between 0.9 and 3 μm,” J. Res. Natl. Bur. Stand. Sect. A 78, 247–281 (1974).

Goldstein, L.

R. T. Ku, J. T. Verdeyen, B. E. Cherrington, L. Goldstein, “Plasma and Gaseous Diagnostics with a Tuned GaAs Laser Diode,” J. Appl. Phys. 43, 4579–4585 (1972).
[CrossRef]

Hashimoto, M.

M. Hashimoto, M. Ohtsu, “Experiments on a Semiconductor Laser Pumped Rubidium Atomic Clock,” IEEE J. Quantum Electron. QE-23, 446–451 (1987).
[CrossRef]

Jayaraman, V.

V. Jayaraman, E. S. Kintzer, J. G. Garcia, A. D. Pillsbury, “Design and Performance of an On-Satellite Laser Diagnostic System for a Free Space Optical Heterodyne Frequency-Shift-Keyed Communication System,” Proc. Soc. Photo-Opt. Instrum. Eng. 996, 84–91 (1988).

Johnston, H. S.

Keller, R. A.

B. A. Palmer, R. A. Keller, R. Engleman, “An Atlas of Uranium Emission Intensities in a Hollow Cathode Discharge,” Los Alamos Scientific Laboratory, Report LA-8251 (1980).

Kimura, T.

T. Kimura, “Coherent Optical Fiber Transmission,” IEEE/OSA J. Lightwave Technol. LT-5, 414–428 (1987).
[CrossRef]

Kintzer, E. S.

V. Jayaraman, E. S. Kintzer, J. G. Garcia, A. D. Pillsbury, “Design and Performance of an On-Satellite Laser Diagnostic System for a Free Space Optical Heterodyne Frequency-Shift-Keyed Communication System,” Proc. Soc. Photo-Opt. Instrum. Eng. 996, 84–91 (1988).

Kotani, H.

M. Ohtsu, H. Kotani, H. Tagawa, “Spectral Measurements of NH3 and H2O for Pollutant Gas Monitoring by 1.5 μm InGaAsP/InP Lasers,” Jpn. J. Appl. Phys. 22, 1553–1557 (1983).
[CrossRef]

Ku, R. T.

R. T. Ku, J. T. Verdeyen, B. E. Cherrington, L. Goldstein, “Plasma and Gaseous Diagnostics with a Tuned GaAs Laser Diode,” J. Appl. Phys. 43, 4579–4585 (1972).
[CrossRef]

Langlois, E.

Leblanc, B.

Lenth, W.

Mongeau, B.

Ohtsu, M.

M. Hashimoto, M. Ohtsu, “Experiments on a Semiconductor Laser Pumped Rubidium Atomic Clock,” IEEE J. Quantum Electron. QE-23, 446–451 (1987).
[CrossRef]

M. Ohtsu, H. Kotani, H. Tagawa, “Spectral Measurements of NH3 and H2O for Pollutant Gas Monitoring by 1.5 μm InGaAsP/InP Lasers,” Jpn. J. Appl. Phys. 22, 1553–1557 (1983).
[CrossRef]

Palmer, B. A.

R. Engleman, B. A. Palmer, “Precision Isotope Shifts for the Heavy Elements. I. Neutral Uranium in the Visible and Near Infrared,” J. Opt. Soc. Am. 70, 308–317 (1980).
[CrossRef]

B. A. Palmer, R. A. Keller, R. Engleman, “An Atlas of Uranium Emission Intensities in a Hollow Cathode Discharge,” Los Alamos Scientific Laboratory, Report LA-8251 (1980).

B. A. Palmer, R. Engleman, “Atlas of the Thorium Spectrum,” Los Alamos Scientific Laboratory, Report LA-9615 (1983).

Pianarosa, P.

Pillsbury, A. D.

V. Jayaraman, E. S. Kintzer, J. G. Garcia, A. D. Pillsbury, “Design and Performance of an On-Satellite Laser Diagnostic System for a Free Space Optical Heterodyne Frequency-Shift-Keyed Communication System,” Proc. Soc. Photo-Opt. Instrum. Eng. 996, 84–91 (1988).

Radziemski, L. J.

Saint-Dizier, J. P.

Sansonetti, C. J.

Schuurmans,

Schuurmans, “On the Spectra of Neodynium and Uranium,” Physica 11, 419–425 (1946).
[CrossRef]

Steinhaus, D. W.

D. W. Steinhaus et al., “Present Status of the Analysis of First and Second Spectra of Uranium (UI and UII) as Derived from Measurement of Optical Spectra,” Los Alamos Scientific Laboratory, Report LA-4501 (1971).

Tagawa, H.

M. Ohtsu, H. Kotani, H. Tagawa, “Spectral Measurements of NH3 and H2O for Pollutant Gas Monitoring by 1.5 μm InGaAsP/InP Lasers,” Jpn. J. Appl. Phys. 22, 1553–1557 (1983).
[CrossRef]

Tetu, M.

M. Tetu, B. Villeneuve, N. Cyr, P. Tremblay, S. Theriault, M. Breton, “Multiwavelength Sources Using Laser Diodes Frequency-Locked to Atomic Resonances,” IEEE/OSA J. Lightwave Technol. LT-7, 1540–1547 (1989).
[CrossRef]

Têtu, M.

B. Villeneuve, N. Cyr, M. Têtu, “Use of Laser Diodes Locked to Atomic Transitions in Multiwavelength Coherent Communications,” Electron. Lett. 24, 736–737 (1988).
[CrossRef]

Theriault, S.

M. Tetu, B. Villeneuve, N. Cyr, P. Tremblay, S. Theriault, M. Breton, “Multiwavelength Sources Using Laser Diodes Frequency-Locked to Atomic Resonances,” IEEE/OSA J. Lightwave Technol. LT-7, 1540–1547 (1989).
[CrossRef]

Tremblay, P.

M. Tetu, B. Villeneuve, N. Cyr, P. Tremblay, S. Theriault, M. Breton, “Multiwavelength Sources Using Laser Diodes Frequency-Locked to Atomic Resonances,” IEEE/OSA J. Lightwave Technol. LT-7, 1540–1547 (1989).
[CrossRef]

Verdeyen, J. T.

R. T. Ku, J. T. Verdeyen, B. E. Cherrington, L. Goldstein, “Plasma and Gaseous Diagnostics with a Tuned GaAs Laser Diode,” J. Appl. Phys. 43, 4579–4585 (1972).
[CrossRef]

Villeneuve, B.

M. Tetu, B. Villeneuve, N. Cyr, P. Tremblay, S. Theriault, M. Breton, “Multiwavelength Sources Using Laser Diodes Frequency-Locked to Atomic Resonances,” IEEE/OSA J. Lightwave Technol. LT-7, 1540–1547 (1989).
[CrossRef]

B. Villeneuve, N. Cyr, M. Têtu, “Use of Laser Diodes Locked to Atomic Transitions in Multiwavelength Coherent Communications,” Electron. Lett. 24, 736–737 (1988).
[CrossRef]

Warden, E. F.

Weber, K.-H.

Young, A. T.

Zalubas, R.

A. Giacchetti, J. Blaise, C. H. Corliss, R. Zalubas, “Proposed Secondary Wavelength Standards and Line Classifications in Thorium Spectra Between 0.9 and 3 μm,” J. Res. Natl. Bur. Stand. Sect. A 78, 247–281 (1974).

Appl. Opt. (1)

Electron. Lett. (1)

B. Villeneuve, N. Cyr, M. Têtu, “Use of Laser Diodes Locked to Atomic Transitions in Multiwavelength Coherent Communications,” Electron. Lett. 24, 736–737 (1988).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Hashimoto, M. Ohtsu, “Experiments on a Semiconductor Laser Pumped Rubidium Atomic Clock,” IEEE J. Quantum Electron. QE-23, 446–451 (1987).
[CrossRef]

IEEE/OSA J. Lightwave Technol. (2)

M. Tetu, B. Villeneuve, N. Cyr, P. Tremblay, S. Theriault, M. Breton, “Multiwavelength Sources Using Laser Diodes Frequency-Locked to Atomic Resonances,” IEEE/OSA J. Lightwave Technol. LT-7, 1540–1547 (1989).
[CrossRef]

T. Kimura, “Coherent Optical Fiber Transmission,” IEEE/OSA J. Lightwave Technol. LT-5, 414–428 (1987).
[CrossRef]

J. Appl. Phys. (1)

R. T. Ku, J. T. Verdeyen, B. E. Cherrington, L. Goldstein, “Plasma and Gaseous Diagnostics with a Tuned GaAs Laser Diode,” J. Appl. Phys. 43, 4579–4585 (1972).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. B (3)

J. Res. Natl. Bur. Stand. Sect. A (1)

A. Giacchetti, J. Blaise, C. H. Corliss, R. Zalubas, “Proposed Secondary Wavelength Standards and Line Classifications in Thorium Spectra Between 0.9 and 3 μm,” J. Res. Natl. Bur. Stand. Sect. A 78, 247–281 (1974).

Jpn. J. Appl. Phys. (1)

M. Ohtsu, H. Kotani, H. Tagawa, “Spectral Measurements of NH3 and H2O for Pollutant Gas Monitoring by 1.5 μm InGaAsP/InP Lasers,” Jpn. J. Appl. Phys. 22, 1553–1557 (1983).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. A (1)

J. R. Brandenberger, “Hyperfine Splittings in 4p55p Configuration of 83Kr Using Saturated Absorption Laser Spectroscopy,” Phys. Rev. A 39, 64–68 (1989).
[CrossRef] [PubMed]

Physica (1)

Schuurmans, “On the Spectra of Neodynium and Uranium,” Physica 11, 419–425 (1946).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

V. Jayaraman, E. S. Kintzer, J. G. Garcia, A. D. Pillsbury, “Design and Performance of an On-Satellite Laser Diagnostic System for a Free Space Optical Heterodyne Frequency-Shift-Keyed Communication System,” Proc. Soc. Photo-Opt. Instrum. Eng. 996, 84–91 (1988).

Other (4)

G. P. Agrawal, N. K. Dutta, Long-Wavelength Semiconductor Lasers (Van Nostrand Reinhold, New York, 1986), p. 6.

D. W. Steinhaus et al., “Present Status of the Analysis of First and Second Spectra of Uranium (UI and UII) as Derived from Measurement of Optical Spectra,” Los Alamos Scientific Laboratory, Report LA-4501 (1971).

B. A. Palmer, R. A. Keller, R. Engleman, “An Atlas of Uranium Emission Intensities in a Hollow Cathode Discharge,” Los Alamos Scientific Laboratory, Report LA-8251 (1980).

B. A. Palmer, R. Engleman, “Atlas of the Thorium Spectrum,” Los Alamos Scientific Laboratory, Report LA-9615 (1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

Hollow cathode setup: (1) glass window; (2) Pyrex cylinder; (3) Teflon insulator; (4) water in; (5) hollow cathode; (6) anode; (7) water out; (8) O-ring; (9) soldered joint; (10) standard vacuum system.

Fig. 3
Fig. 3

Measured relationship between buffer gas pressure and peak optogalvanic signal of the UI 826.20570-nm line: (a) argon; (b) krypton.

Fig. 4
Fig. 4

Observed first derivative signals: (a) 8118—20,218-cm−1 transition of UI; (b) 1s2—2p2 transition of Kr.

Fig. 5
Fig. 5

Traces of the error signal: (a) free-running; (b) locked to the uranium transition; (c) locked to the krypton transition.

Metrics