Abstract

In this paper we study the potential of using multimode laser diodes as an alternative to low coherence length sources normally used white light fiber optic interferometric sensors. A simple theoretical model is introduced to demonstrate the autocorrelation function of such sources. An experimental setup of two interferometers in tandem was used to study the coherence properties of the multimode laser diode Mitsubishi ML-4406 and then to demonstrate the possibility of using it in coherence tuned multiplexing systems. The main advantage of using such sources is to launch more optical power into the monomode fiber and hence to improve the system resolution.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Jackson, “Monomode Optical Fibre Interferometers for Precision Measurement,” J. Phys. E 18, 981–1001 (1985).
    [CrossRef]
  2. A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “Fibre Optic Interferometric Sensor Using a Low Coherence Source: Dynamic Range Enhancement,” Int. J. Opto-electron. 13, 311–322 (1988).
  3. A. S. Gerges, T. P. Newson, F. Farahi, J. D. C. Jones, D. A. Jackson, “A Hemispherical Air Cavity Fibre Fabry-Perot Sensor,” Opt. Commun. 68, 157–160 (1988).
    [CrossRef]
  4. W. V. Smith, P. P. Sorokin, The Laser (McGraw Hill, New York, 1966), Chap. 3.
  5. S. Iida, K. Takata, Y. Unno, “Spectral Behaviour and Line width of (Ga Al) As-Ga As Double-Heterodyne Lasers at Room Temperature with Strip Geometry Configuration,” IEEE J. Quantum Electron. QE-9, 361–366 (1973).
    [CrossRef]
  6. A. R. Reisinger, C. D. David, K. L. Lawley, A. Yariv, “Coherence of a Room Temperature CW GaAs/GaAlAs Injection laser,” IEEE J. Quantum Electron. QE-15, 1382–1387 (1979).
    [CrossRef]
  7. M. V. Klein, T. E. Furtak, Optics (Wiley, New York, 1986), Chap. 8.
  8. A. D. Kersey, A. Dandridge, “Phase-Noise Reduction in Coherence-Multiplexed Interferometric Fibre Sensors,” Electron. lett. 22, 616–618 (1986).
    [CrossRef]

1988 (2)

A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “Fibre Optic Interferometric Sensor Using a Low Coherence Source: Dynamic Range Enhancement,” Int. J. Opto-electron. 13, 311–322 (1988).

A. S. Gerges, T. P. Newson, F. Farahi, J. D. C. Jones, D. A. Jackson, “A Hemispherical Air Cavity Fibre Fabry-Perot Sensor,” Opt. Commun. 68, 157–160 (1988).
[CrossRef]

1986 (1)

A. D. Kersey, A. Dandridge, “Phase-Noise Reduction in Coherence-Multiplexed Interferometric Fibre Sensors,” Electron. lett. 22, 616–618 (1986).
[CrossRef]

1985 (1)

D. A. Jackson, “Monomode Optical Fibre Interferometers for Precision Measurement,” J. Phys. E 18, 981–1001 (1985).
[CrossRef]

1979 (1)

A. R. Reisinger, C. D. David, K. L. Lawley, A. Yariv, “Coherence of a Room Temperature CW GaAs/GaAlAs Injection laser,” IEEE J. Quantum Electron. QE-15, 1382–1387 (1979).
[CrossRef]

1973 (1)

S. Iida, K. Takata, Y. Unno, “Spectral Behaviour and Line width of (Ga Al) As-Ga As Double-Heterodyne Lasers at Room Temperature with Strip Geometry Configuration,” IEEE J. Quantum Electron. QE-9, 361–366 (1973).
[CrossRef]

Dandridge, A.

A. D. Kersey, A. Dandridge, “Phase-Noise Reduction in Coherence-Multiplexed Interferometric Fibre Sensors,” Electron. lett. 22, 616–618 (1986).
[CrossRef]

David, C. D.

A. R. Reisinger, C. D. David, K. L. Lawley, A. Yariv, “Coherence of a Room Temperature CW GaAs/GaAlAs Injection laser,” IEEE J. Quantum Electron. QE-15, 1382–1387 (1979).
[CrossRef]

Farahi, F.

A. S. Gerges, T. P. Newson, F. Farahi, J. D. C. Jones, D. A. Jackson, “A Hemispherical Air Cavity Fibre Fabry-Perot Sensor,” Opt. Commun. 68, 157–160 (1988).
[CrossRef]

A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “Fibre Optic Interferometric Sensor Using a Low Coherence Source: Dynamic Range Enhancement,” Int. J. Opto-electron. 13, 311–322 (1988).

Furtak, T. E.

M. V. Klein, T. E. Furtak, Optics (Wiley, New York, 1986), Chap. 8.

Gerges, A. S.

A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “Fibre Optic Interferometric Sensor Using a Low Coherence Source: Dynamic Range Enhancement,” Int. J. Opto-electron. 13, 311–322 (1988).

A. S. Gerges, T. P. Newson, F. Farahi, J. D. C. Jones, D. A. Jackson, “A Hemispherical Air Cavity Fibre Fabry-Perot Sensor,” Opt. Commun. 68, 157–160 (1988).
[CrossRef]

Iida, S.

S. Iida, K. Takata, Y. Unno, “Spectral Behaviour and Line width of (Ga Al) As-Ga As Double-Heterodyne Lasers at Room Temperature with Strip Geometry Configuration,” IEEE J. Quantum Electron. QE-9, 361–366 (1973).
[CrossRef]

Jackson, D. A.

A. S. Gerges, T. P. Newson, F. Farahi, J. D. C. Jones, D. A. Jackson, “A Hemispherical Air Cavity Fibre Fabry-Perot Sensor,” Opt. Commun. 68, 157–160 (1988).
[CrossRef]

A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “Fibre Optic Interferometric Sensor Using a Low Coherence Source: Dynamic Range Enhancement,” Int. J. Opto-electron. 13, 311–322 (1988).

D. A. Jackson, “Monomode Optical Fibre Interferometers for Precision Measurement,” J. Phys. E 18, 981–1001 (1985).
[CrossRef]

Jones, J. D. C.

A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “Fibre Optic Interferometric Sensor Using a Low Coherence Source: Dynamic Range Enhancement,” Int. J. Opto-electron. 13, 311–322 (1988).

A. S. Gerges, T. P. Newson, F. Farahi, J. D. C. Jones, D. A. Jackson, “A Hemispherical Air Cavity Fibre Fabry-Perot Sensor,” Opt. Commun. 68, 157–160 (1988).
[CrossRef]

Kersey, A. D.

A. D. Kersey, A. Dandridge, “Phase-Noise Reduction in Coherence-Multiplexed Interferometric Fibre Sensors,” Electron. lett. 22, 616–618 (1986).
[CrossRef]

Klein, M. V.

M. V. Klein, T. E. Furtak, Optics (Wiley, New York, 1986), Chap. 8.

Lawley, K. L.

A. R. Reisinger, C. D. David, K. L. Lawley, A. Yariv, “Coherence of a Room Temperature CW GaAs/GaAlAs Injection laser,” IEEE J. Quantum Electron. QE-15, 1382–1387 (1979).
[CrossRef]

Newson, T. P.

A. S. Gerges, T. P. Newson, F. Farahi, J. D. C. Jones, D. A. Jackson, “A Hemispherical Air Cavity Fibre Fabry-Perot Sensor,” Opt. Commun. 68, 157–160 (1988).
[CrossRef]

A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “Fibre Optic Interferometric Sensor Using a Low Coherence Source: Dynamic Range Enhancement,” Int. J. Opto-electron. 13, 311–322 (1988).

Reisinger, A. R.

A. R. Reisinger, C. D. David, K. L. Lawley, A. Yariv, “Coherence of a Room Temperature CW GaAs/GaAlAs Injection laser,” IEEE J. Quantum Electron. QE-15, 1382–1387 (1979).
[CrossRef]

Smith, W. V.

W. V. Smith, P. P. Sorokin, The Laser (McGraw Hill, New York, 1966), Chap. 3.

Sorokin, P. P.

W. V. Smith, P. P. Sorokin, The Laser (McGraw Hill, New York, 1966), Chap. 3.

Takata, K.

S. Iida, K. Takata, Y. Unno, “Spectral Behaviour and Line width of (Ga Al) As-Ga As Double-Heterodyne Lasers at Room Temperature with Strip Geometry Configuration,” IEEE J. Quantum Electron. QE-9, 361–366 (1973).
[CrossRef]

Unno, Y.

S. Iida, K. Takata, Y. Unno, “Spectral Behaviour and Line width of (Ga Al) As-Ga As Double-Heterodyne Lasers at Room Temperature with Strip Geometry Configuration,” IEEE J. Quantum Electron. QE-9, 361–366 (1973).
[CrossRef]

Yariv, A.

A. R. Reisinger, C. D. David, K. L. Lawley, A. Yariv, “Coherence of a Room Temperature CW GaAs/GaAlAs Injection laser,” IEEE J. Quantum Electron. QE-15, 1382–1387 (1979).
[CrossRef]

Electron. lett. (1)

A. D. Kersey, A. Dandridge, “Phase-Noise Reduction in Coherence-Multiplexed Interferometric Fibre Sensors,” Electron. lett. 22, 616–618 (1986).
[CrossRef]

IEEE J. Quantum Electron. (2)

S. Iida, K. Takata, Y. Unno, “Spectral Behaviour and Line width of (Ga Al) As-Ga As Double-Heterodyne Lasers at Room Temperature with Strip Geometry Configuration,” IEEE J. Quantum Electron. QE-9, 361–366 (1973).
[CrossRef]

A. R. Reisinger, C. D. David, K. L. Lawley, A. Yariv, “Coherence of a Room Temperature CW GaAs/GaAlAs Injection laser,” IEEE J. Quantum Electron. QE-15, 1382–1387 (1979).
[CrossRef]

Int. J. Opto-electron. (1)

A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “Fibre Optic Interferometric Sensor Using a Low Coherence Source: Dynamic Range Enhancement,” Int. J. Opto-electron. 13, 311–322 (1988).

J. Phys. E (1)

D. A. Jackson, “Monomode Optical Fibre Interferometers for Precision Measurement,” J. Phys. E 18, 981–1001 (1985).
[CrossRef]

Opt. Commun. (1)

A. S. Gerges, T. P. Newson, F. Farahi, J. D. C. Jones, D. A. Jackson, “A Hemispherical Air Cavity Fibre Fabry-Perot Sensor,” Opt. Commun. 68, 157–160 (1988).
[CrossRef]

Other (2)

W. V. Smith, P. P. Sorokin, The Laser (McGraw Hill, New York, 1966), Chap. 3.

M. V. Klein, T. E. Furtak, Optics (Wiley, New York, 1986), Chap. 8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Computer simulation of a multimode laser: (a) spectrum and (b) autocorrelation function.

Fig. 2
Fig. 2

Predicted output of two interferometers in tandem illuminated by (a) a low coherence length source and (b) a multimode laser diode.

Fig. 3
Fig. 3

Optical setup to characterize the multimode laser diode: MLD, multimode laser diode; TS, translation stage; PD photodiode; BS, beam splitter, SG, signal generator.

Fig. 4
Fig. 4

Source autocorrelation function; (a) location and peak values of the sets of interference packets and (b) the visibility variation of the central interference packets.

Fig. 5
Fig. 5

(a) Variation of the mean noise floor of the two tandem interferometers compared with the residual interference signal due to the receiving interferometer and (b) variation of the system phase resolution.

Fig. 6
Fig. 6

Servo output vs the displacement of the mirror of the sensing interferometer.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

I = I s [ 1 + K s cos Δ ϕ 0 ( Δ L ) + j = - m / 2 + m / 2 I j [ 1 + K j cos Δ ϕ j ( Δ L ) ] ,
Δ ϕ j = 2 π ν j C Δ L ,
I mean = I s + j = - m / 2 m / 2 I j ,
I osc = I s K s cos Δ ϕ 0 ( Δ L ) + j = - m / 2 m / 2 I j K j cos Δ ϕ j ( Δ L ) .
I = I mean [ 1 + V ( Δ L ) cos ( 2 π ν o C Δ L ) ] ,
γ 11 ( Δ L ) = I osc I mean cos Δ ϕ o ( Δ L ) .
γ 11 ( Δ L ) = 1 I mean { ( I o K + I s K s ) + 2 K [ j = 1 m / 2 I j cos ( 2 π Δ L C j Δ F ) ] } .
I = I mean { 1 + γ 11 ( Δ L 1 ) cos ( 2 π ν o C Δ L 1 ) + γ 11 ( Δ L 2 ) cos ( 2 π ν o C Δ L 2 ) + 1 2 γ 11 ( Δ L 1 + Δ L 2 ) cos [ 2 π ν o C ( Δ L 1 + Δ L 2 ) ] + 1 2 γ 11 ( Δ L 1 - Δ L 2 ) cos [ 2 π ν o C ( Δ L 1 - Δ L 2 ) ] } ,
I ( Δ L 1 ± Δ L 2 ) L c = I mean { 1 + ½ γ 11 ( Δ L 1 ± Δ L 2 ) × cos [ 2 π ν o C ( Δ L 1 ± Δ L 2 ) ] } ,
( p l cav + 3 W ) < Δ L 1 < [ ( p + 1 ) l cav - 3 W ] ,

Metrics