Abstract

The refractive index profiles of titanium-diffused LiNbO3 planar and channel waveguides are determined directly by measuring the reflectivity of angular polished surfaces. Three measurement techniques are described and compared: (1) large area illumination of the angular polished waveguide and imaging of the reflected light to a vidicon, (2) scanning of a focused beam across the sample, and (3) scanning of the sample under a focused beam. Preference is given to the last method which provides an accuracy of Δn/n = 10−4 with a local resolution of the index profile of <0.1 μm in depth and ~1 μm in width.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Minakata, S. Saito, M. Shibata, S. Miyazawa, “Precise Determination of Refractive Index Changes in Ti-Diffused LiNbO3 Optical Waveguides,” J. Appl. Phys. 49, 4677–4682 (1978).
    [CrossRef]
  2. P. Hertel, H. P. Menzler, “Improved INverse WKB Procedure to Reconstruct Refractive Index Profiles of Dielectric Planar Waveguides,” Appl. Phys. B 44, 75–80 (1985).
  3. J. Noda, M. Minakata, S. Saito, N. Uchida, “Precise Determination of Refractive Index and Thickness in the Ti-Diffused LiNbO3 Waveguides,” J. Opt. Soc. Am. 68, 1690–1693 (1979).
    [CrossRef]
  4. J. Ctyroky, M. Hofman, J. Janta, J. Schrofel, “3-D-Analysis of LiNbO3:Ti Channel Waveguides and Directional Couplers,” IEEE J. Quantum Electron. QE-20, 400–409 (1984).
    [CrossRef]
  5. A. Neyer, “Direct Measurement of Refractive Index Profiles of Ti:LiNbO3 Slab Waveguides,” in Integrated Optics, Proceedings, ECIO ’85, H. P. Nolting, R. Ulrich, Eds., (Springer-Verlag, New York, 1985), pp. 67–70.
  6. H.-J. Lilienhof, K. F. Heidemann, D. Ritter, E. Voges, “Index Profiles of Multimode Optical Strip Waveguides by Field-Enhanced Ion Exchange in Glass,” Opt. Commun. 35, 49–53 (1980).
    [CrossRef]
  7. A. Loffredo, “A New Optical Scanning Microscope for Refractive Index Profile Measurement,” Opt. Commun. 9, 88–91 (1988).
  8. H.-J. Lilienhof, E. Voges, D. Ritter, B. Pantschew, “Field-Induced Index Profiles of Multimode Ion-Exchanged Strip Waveguides,” IEEE J. Quantum Electron. QE-18, 1877–1883 (1982).
    [CrossRef]
  9. K. F. Heidemann, “Complex-Refractive-Index Profiles of 4 MeV Ge Ion-Irradiation Damage in Silicon,” Philos. Mag. B 44, 465–485 (1985).
    [CrossRef]
  10. S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, L. Riviere, “Wavelength Dispersion of Ti Induced Refractive Index Changes in LiNbO3 as a Function of Diffusion Parameters,” IEEE/OSA J. Lightwave Technol. LT-5, 700–708 (1987).
    [CrossRef]
  11. A. Neyer, T. Pohlmann, “Fabrication of Low-Loss Ti-Diffused LiNbO3 Waveguides Using a Closed Platinum Crucible,” Electron. Lett. 23, 1187–1188 (1987).
    [CrossRef]
  12. R. J. Holmes, D. M. Smyth, “Titanium Diffusion into LiNbO3 as a Function of Stoichiometry,” J. Appl. Phys. 55, 3531–3535 (1984).
    [CrossRef]
  13. J. Noda, M. Fukuma, S. Saito, “Effect of Mg Diffusion on Ti-Diffused LiNbO3 Waveguides,” J. Appl. Phys. 49, 3150–3154 (1978).
    [CrossRef]

1988 (1)

A. Loffredo, “A New Optical Scanning Microscope for Refractive Index Profile Measurement,” Opt. Commun. 9, 88–91 (1988).

1987 (2)

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, L. Riviere, “Wavelength Dispersion of Ti Induced Refractive Index Changes in LiNbO3 as a Function of Diffusion Parameters,” IEEE/OSA J. Lightwave Technol. LT-5, 700–708 (1987).
[CrossRef]

A. Neyer, T. Pohlmann, “Fabrication of Low-Loss Ti-Diffused LiNbO3 Waveguides Using a Closed Platinum Crucible,” Electron. Lett. 23, 1187–1188 (1987).
[CrossRef]

1985 (2)

K. F. Heidemann, “Complex-Refractive-Index Profiles of 4 MeV Ge Ion-Irradiation Damage in Silicon,” Philos. Mag. B 44, 465–485 (1985).
[CrossRef]

P. Hertel, H. P. Menzler, “Improved INverse WKB Procedure to Reconstruct Refractive Index Profiles of Dielectric Planar Waveguides,” Appl. Phys. B 44, 75–80 (1985).

1984 (2)

J. Ctyroky, M. Hofman, J. Janta, J. Schrofel, “3-D-Analysis of LiNbO3:Ti Channel Waveguides and Directional Couplers,” IEEE J. Quantum Electron. QE-20, 400–409 (1984).
[CrossRef]

R. J. Holmes, D. M. Smyth, “Titanium Diffusion into LiNbO3 as a Function of Stoichiometry,” J. Appl. Phys. 55, 3531–3535 (1984).
[CrossRef]

1982 (1)

H.-J. Lilienhof, E. Voges, D. Ritter, B. Pantschew, “Field-Induced Index Profiles of Multimode Ion-Exchanged Strip Waveguides,” IEEE J. Quantum Electron. QE-18, 1877–1883 (1982).
[CrossRef]

1980 (1)

H.-J. Lilienhof, K. F. Heidemann, D. Ritter, E. Voges, “Index Profiles of Multimode Optical Strip Waveguides by Field-Enhanced Ion Exchange in Glass,” Opt. Commun. 35, 49–53 (1980).
[CrossRef]

1979 (1)

1978 (2)

M. Minakata, S. Saito, M. Shibata, S. Miyazawa, “Precise Determination of Refractive Index Changes in Ti-Diffused LiNbO3 Optical Waveguides,” J. Appl. Phys. 49, 4677–4682 (1978).
[CrossRef]

J. Noda, M. Fukuma, S. Saito, “Effect of Mg Diffusion on Ti-Diffused LiNbO3 Waveguides,” J. Appl. Phys. 49, 3150–3154 (1978).
[CrossRef]

Carenco, A.

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, L. Riviere, “Wavelength Dispersion of Ti Induced Refractive Index Changes in LiNbO3 as a Function of Diffusion Parameters,” IEEE/OSA J. Lightwave Technol. LT-5, 700–708 (1987).
[CrossRef]

Ctyroky, J.

J. Ctyroky, M. Hofman, J. Janta, J. Schrofel, “3-D-Analysis of LiNbO3:Ti Channel Waveguides and Directional Couplers,” IEEE J. Quantum Electron. QE-20, 400–409 (1984).
[CrossRef]

Daguet, C.

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, L. Riviere, “Wavelength Dispersion of Ti Induced Refractive Index Changes in LiNbO3 as a Function of Diffusion Parameters,” IEEE/OSA J. Lightwave Technol. LT-5, 700–708 (1987).
[CrossRef]

Fouchet, S.

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, L. Riviere, “Wavelength Dispersion of Ti Induced Refractive Index Changes in LiNbO3 as a Function of Diffusion Parameters,” IEEE/OSA J. Lightwave Technol. LT-5, 700–708 (1987).
[CrossRef]

Fukuma, M.

J. Noda, M. Fukuma, S. Saito, “Effect of Mg Diffusion on Ti-Diffused LiNbO3 Waveguides,” J. Appl. Phys. 49, 3150–3154 (1978).
[CrossRef]

Guglielmi, R.

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, L. Riviere, “Wavelength Dispersion of Ti Induced Refractive Index Changes in LiNbO3 as a Function of Diffusion Parameters,” IEEE/OSA J. Lightwave Technol. LT-5, 700–708 (1987).
[CrossRef]

Heidemann, K. F.

K. F. Heidemann, “Complex-Refractive-Index Profiles of 4 MeV Ge Ion-Irradiation Damage in Silicon,” Philos. Mag. B 44, 465–485 (1985).
[CrossRef]

H.-J. Lilienhof, K. F. Heidemann, D. Ritter, E. Voges, “Index Profiles of Multimode Optical Strip Waveguides by Field-Enhanced Ion Exchange in Glass,” Opt. Commun. 35, 49–53 (1980).
[CrossRef]

Hertel, P.

P. Hertel, H. P. Menzler, “Improved INverse WKB Procedure to Reconstruct Refractive Index Profiles of Dielectric Planar Waveguides,” Appl. Phys. B 44, 75–80 (1985).

Hofman, M.

J. Ctyroky, M. Hofman, J. Janta, J. Schrofel, “3-D-Analysis of LiNbO3:Ti Channel Waveguides and Directional Couplers,” IEEE J. Quantum Electron. QE-20, 400–409 (1984).
[CrossRef]

Holmes, R. J.

R. J. Holmes, D. M. Smyth, “Titanium Diffusion into LiNbO3 as a Function of Stoichiometry,” J. Appl. Phys. 55, 3531–3535 (1984).
[CrossRef]

Janta, J.

J. Ctyroky, M. Hofman, J. Janta, J. Schrofel, “3-D-Analysis of LiNbO3:Ti Channel Waveguides and Directional Couplers,” IEEE J. Quantum Electron. QE-20, 400–409 (1984).
[CrossRef]

Lilienhof, H.-J.

H.-J. Lilienhof, E. Voges, D. Ritter, B. Pantschew, “Field-Induced Index Profiles of Multimode Ion-Exchanged Strip Waveguides,” IEEE J. Quantum Electron. QE-18, 1877–1883 (1982).
[CrossRef]

H.-J. Lilienhof, K. F. Heidemann, D. Ritter, E. Voges, “Index Profiles of Multimode Optical Strip Waveguides by Field-Enhanced Ion Exchange in Glass,” Opt. Commun. 35, 49–53 (1980).
[CrossRef]

Loffredo, A.

A. Loffredo, “A New Optical Scanning Microscope for Refractive Index Profile Measurement,” Opt. Commun. 9, 88–91 (1988).

Menzler, H. P.

P. Hertel, H. P. Menzler, “Improved INverse WKB Procedure to Reconstruct Refractive Index Profiles of Dielectric Planar Waveguides,” Appl. Phys. B 44, 75–80 (1985).

Minakata, M.

J. Noda, M. Minakata, S. Saito, N. Uchida, “Precise Determination of Refractive Index and Thickness in the Ti-Diffused LiNbO3 Waveguides,” J. Opt. Soc. Am. 68, 1690–1693 (1979).
[CrossRef]

M. Minakata, S. Saito, M. Shibata, S. Miyazawa, “Precise Determination of Refractive Index Changes in Ti-Diffused LiNbO3 Optical Waveguides,” J. Appl. Phys. 49, 4677–4682 (1978).
[CrossRef]

Miyazawa, S.

M. Minakata, S. Saito, M. Shibata, S. Miyazawa, “Precise Determination of Refractive Index Changes in Ti-Diffused LiNbO3 Optical Waveguides,” J. Appl. Phys. 49, 4677–4682 (1978).
[CrossRef]

Neyer, A.

A. Neyer, T. Pohlmann, “Fabrication of Low-Loss Ti-Diffused LiNbO3 Waveguides Using a Closed Platinum Crucible,” Electron. Lett. 23, 1187–1188 (1987).
[CrossRef]

A. Neyer, “Direct Measurement of Refractive Index Profiles of Ti:LiNbO3 Slab Waveguides,” in Integrated Optics, Proceedings, ECIO ’85, H. P. Nolting, R. Ulrich, Eds., (Springer-Verlag, New York, 1985), pp. 67–70.

Noda, J.

Pantschew, B.

H.-J. Lilienhof, E. Voges, D. Ritter, B. Pantschew, “Field-Induced Index Profiles of Multimode Ion-Exchanged Strip Waveguides,” IEEE J. Quantum Electron. QE-18, 1877–1883 (1982).
[CrossRef]

Pohlmann, T.

A. Neyer, T. Pohlmann, “Fabrication of Low-Loss Ti-Diffused LiNbO3 Waveguides Using a Closed Platinum Crucible,” Electron. Lett. 23, 1187–1188 (1987).
[CrossRef]

Ritter, D.

H.-J. Lilienhof, E. Voges, D. Ritter, B. Pantschew, “Field-Induced Index Profiles of Multimode Ion-Exchanged Strip Waveguides,” IEEE J. Quantum Electron. QE-18, 1877–1883 (1982).
[CrossRef]

H.-J. Lilienhof, K. F. Heidemann, D. Ritter, E. Voges, “Index Profiles of Multimode Optical Strip Waveguides by Field-Enhanced Ion Exchange in Glass,” Opt. Commun. 35, 49–53 (1980).
[CrossRef]

Riviere, L.

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, L. Riviere, “Wavelength Dispersion of Ti Induced Refractive Index Changes in LiNbO3 as a Function of Diffusion Parameters,” IEEE/OSA J. Lightwave Technol. LT-5, 700–708 (1987).
[CrossRef]

Saito, S.

J. Noda, M. Minakata, S. Saito, N. Uchida, “Precise Determination of Refractive Index and Thickness in the Ti-Diffused LiNbO3 Waveguides,” J. Opt. Soc. Am. 68, 1690–1693 (1979).
[CrossRef]

M. Minakata, S. Saito, M. Shibata, S. Miyazawa, “Precise Determination of Refractive Index Changes in Ti-Diffused LiNbO3 Optical Waveguides,” J. Appl. Phys. 49, 4677–4682 (1978).
[CrossRef]

J. Noda, M. Fukuma, S. Saito, “Effect of Mg Diffusion on Ti-Diffused LiNbO3 Waveguides,” J. Appl. Phys. 49, 3150–3154 (1978).
[CrossRef]

Schrofel, J.

J. Ctyroky, M. Hofman, J. Janta, J. Schrofel, “3-D-Analysis of LiNbO3:Ti Channel Waveguides and Directional Couplers,” IEEE J. Quantum Electron. QE-20, 400–409 (1984).
[CrossRef]

Shibata, M.

M. Minakata, S. Saito, M. Shibata, S. Miyazawa, “Precise Determination of Refractive Index Changes in Ti-Diffused LiNbO3 Optical Waveguides,” J. Appl. Phys. 49, 4677–4682 (1978).
[CrossRef]

Smyth, D. M.

R. J. Holmes, D. M. Smyth, “Titanium Diffusion into LiNbO3 as a Function of Stoichiometry,” J. Appl. Phys. 55, 3531–3535 (1984).
[CrossRef]

Uchida, N.

Voges, E.

H.-J. Lilienhof, E. Voges, D. Ritter, B. Pantschew, “Field-Induced Index Profiles of Multimode Ion-Exchanged Strip Waveguides,” IEEE J. Quantum Electron. QE-18, 1877–1883 (1982).
[CrossRef]

H.-J. Lilienhof, K. F. Heidemann, D. Ritter, E. Voges, “Index Profiles of Multimode Optical Strip Waveguides by Field-Enhanced Ion Exchange in Glass,” Opt. Commun. 35, 49–53 (1980).
[CrossRef]

Appl. Phys. B (1)

P. Hertel, H. P. Menzler, “Improved INverse WKB Procedure to Reconstruct Refractive Index Profiles of Dielectric Planar Waveguides,” Appl. Phys. B 44, 75–80 (1985).

Electron. Lett. (1)

A. Neyer, T. Pohlmann, “Fabrication of Low-Loss Ti-Diffused LiNbO3 Waveguides Using a Closed Platinum Crucible,” Electron. Lett. 23, 1187–1188 (1987).
[CrossRef]

IEEE J. Quantum Electron. (2)

J. Ctyroky, M. Hofman, J. Janta, J. Schrofel, “3-D-Analysis of LiNbO3:Ti Channel Waveguides and Directional Couplers,” IEEE J. Quantum Electron. QE-20, 400–409 (1984).
[CrossRef]

H.-J. Lilienhof, E. Voges, D. Ritter, B. Pantschew, “Field-Induced Index Profiles of Multimode Ion-Exchanged Strip Waveguides,” IEEE J. Quantum Electron. QE-18, 1877–1883 (1982).
[CrossRef]

IEEE/OSA J. Lightwave Technol. (1)

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, L. Riviere, “Wavelength Dispersion of Ti Induced Refractive Index Changes in LiNbO3 as a Function of Diffusion Parameters,” IEEE/OSA J. Lightwave Technol. LT-5, 700–708 (1987).
[CrossRef]

J. Appl. Phys. (3)

M. Minakata, S. Saito, M. Shibata, S. Miyazawa, “Precise Determination of Refractive Index Changes in Ti-Diffused LiNbO3 Optical Waveguides,” J. Appl. Phys. 49, 4677–4682 (1978).
[CrossRef]

R. J. Holmes, D. M. Smyth, “Titanium Diffusion into LiNbO3 as a Function of Stoichiometry,” J. Appl. Phys. 55, 3531–3535 (1984).
[CrossRef]

J. Noda, M. Fukuma, S. Saito, “Effect of Mg Diffusion on Ti-Diffused LiNbO3 Waveguides,” J. Appl. Phys. 49, 3150–3154 (1978).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Commun. (2)

H.-J. Lilienhof, K. F. Heidemann, D. Ritter, E. Voges, “Index Profiles of Multimode Optical Strip Waveguides by Field-Enhanced Ion Exchange in Glass,” Opt. Commun. 35, 49–53 (1980).
[CrossRef]

A. Loffredo, “A New Optical Scanning Microscope for Refractive Index Profile Measurement,” Opt. Commun. 9, 88–91 (1988).

Philos. Mag. B (1)

K. F. Heidemann, “Complex-Refractive-Index Profiles of 4 MeV Ge Ion-Irradiation Damage in Silicon,” Philos. Mag. B 44, 465–485 (1985).
[CrossRef]

Other (1)

A. Neyer, “Direct Measurement of Refractive Index Profiles of Ti:LiNbO3 Slab Waveguides,” in Integrated Optics, Proceedings, ECIO ’85, H. P. Nolting, R. Ulrich, Eds., (Springer-Verlag, New York, 1985), pp. 67–70.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Side view of angular polished waveguide for reflectivity profiling.

Fig. 2
Fig. 2

Schematic configuration of experimental setup for reflectivity profiling by the vidicon method.

Fig. 3
Fig. 3

Schematic configuration of experimental setup for reflectivity profiling by the beam scanning method.

Fig. 4
Fig. 4

Schematic configuration of experimental setup for reflectivity profiling by the sample scanning method.

Fig. 5
Fig. 5

Schematic drawing of sample holder for angular polishing.

Fig. 6
Fig. 6

Measured refractive index profiles of a planar x-cut Ti:LiNbO3 waveguide at λ = 633 nm. Fabrication parameters are Ti-thickness τ = 120 nm, diffusion time t = 12 h, diffusion temperature T = 1050°C.

Fig. 7
Fig. 7

Titanium concentration profile of the sample of Fig. 6, measured by electron microprobe analysis.

Fig. 8
Fig. 8

Calculated refractive index profiles with the fabrication parameter of Fig. 6.

Fig. 9
Fig. 9

Refractive index changes as a function of the Ti-concentration, from measured data.

Fig. 10
Fig. 10

Measured 2-D refractive index profile of Ti:LiNbO3 stripe waveguide (original Ti stripe width: 5.4 μm).

Fig. 11
Fig. 11

Refractive index profiles of MgO-buried Ti:LiNbO3 waveguide; A: original Ti:LiNbO3 waveguide, B: 100 Å MgO, C: 200 Å MgO, in diffused at 950°C for 2.5 h.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ n / n s 1 / 4 ( n s - 1 / n s ) Δ R / R s .

Metrics