Abstract

The performance of passive dielectric optical waveguide multibranch power splitters, constructed with different architectures, is analyzed by using the beam propagation method. The principle underlying our configuration seems applicable to a higher-order splitter with an even number of branches.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Belanger, G. L. Yip, M. Haruna, “Passive Planar Multi-branch Power Divider: Some Design Considerations,” Appl. Opt. 22, 2383–2389 (1983).
    [CrossRef] [PubMed]
  2. R. N. Thurston, E. Kapon, Y. Silberberg, “Analysis of Mode Separation in Multichannel Branching Waveguides,” IEEE J. Quantum Electron. QE-23, 1245–1255 (1987).
    [CrossRef]
  3. M. D. Feit, J. A. Fleck, “Light Propagation in Graded-Index Optical Fibers,” Appl. Opt. 17, 3990–3998 (1978).
    [CrossRef] [PubMed]
  4. G. B. Hocker, W. K. Burns, “Mode Dispersion in Diffused Channel Waveguides by the Effective Index Method,” Appl. Opt. 16, 113–118 (1977).
    [CrossRef] [PubMed]
  5. Z. Weissman, E. Marom, A. Hardy, “Very Low Loss Integrated Optics Splitters,” Proc. Soc. Photo-Opt. Instrum. Eng. 1038, 363–370 (1988).
  6. Z. Weissman, E. Marom, A. A. Hardy, “Very Low-Loss Y-Junction Power Divider,” Opt. Lett. 14, 293–295 (1989).
    [CrossRef] [PubMed]

1989

1988

Z. Weissman, E. Marom, A. Hardy, “Very Low Loss Integrated Optics Splitters,” Proc. Soc. Photo-Opt. Instrum. Eng. 1038, 363–370 (1988).

1987

R. N. Thurston, E. Kapon, Y. Silberberg, “Analysis of Mode Separation in Multichannel Branching Waveguides,” IEEE J. Quantum Electron. QE-23, 1245–1255 (1987).
[CrossRef]

1983

1978

1977

Belanger, M.

Burns, W. K.

Feit, M. D.

Fleck, J. A.

Hardy, A.

Z. Weissman, E. Marom, A. Hardy, “Very Low Loss Integrated Optics Splitters,” Proc. Soc. Photo-Opt. Instrum. Eng. 1038, 363–370 (1988).

Hardy, A. A.

Haruna, M.

Hocker, G. B.

Kapon, E.

R. N. Thurston, E. Kapon, Y. Silberberg, “Analysis of Mode Separation in Multichannel Branching Waveguides,” IEEE J. Quantum Electron. QE-23, 1245–1255 (1987).
[CrossRef]

Marom, E.

Z. Weissman, E. Marom, A. A. Hardy, “Very Low-Loss Y-Junction Power Divider,” Opt. Lett. 14, 293–295 (1989).
[CrossRef] [PubMed]

Z. Weissman, E. Marom, A. Hardy, “Very Low Loss Integrated Optics Splitters,” Proc. Soc. Photo-Opt. Instrum. Eng. 1038, 363–370 (1988).

Silberberg, Y.

R. N. Thurston, E. Kapon, Y. Silberberg, “Analysis of Mode Separation in Multichannel Branching Waveguides,” IEEE J. Quantum Electron. QE-23, 1245–1255 (1987).
[CrossRef]

Thurston, R. N.

R. N. Thurston, E. Kapon, Y. Silberberg, “Analysis of Mode Separation in Multichannel Branching Waveguides,” IEEE J. Quantum Electron. QE-23, 1245–1255 (1987).
[CrossRef]

Weissman, Z.

Z. Weissman, E. Marom, A. A. Hardy, “Very Low-Loss Y-Junction Power Divider,” Opt. Lett. 14, 293–295 (1989).
[CrossRef] [PubMed]

Z. Weissman, E. Marom, A. Hardy, “Very Low Loss Integrated Optics Splitters,” Proc. Soc. Photo-Opt. Instrum. Eng. 1038, 363–370 (1988).

Yip, G. L.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

The 1:4 power splitters: (a) conventional configuration; (b) novel configuration.

Fig. 2
Fig. 2

Propagation of the fundamental mode in three 1:4 power splitters: (a) a conventional splitter with the following parameters: λ = 1.32 μm, n0 = 2.2, δneff = 2 × 10−3, w0 = 20 μm, w1 = w2 = 5 μm, α = 1.2°; (b) the same as (a), but modified, with w1 = 7 μm, w2 = 3 μm; (c) the novel splitter with the same parameters as (a) but with w0 = 10 μm and d0 = 4 μm.

Fig. 3
Fig. 3

Power splitting ratio P1/P2 for the three splitters of Figs. 1 and 2: a, conventional splitter; b, modified conventional splitter; and c, novel splitter.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

PSR = P 1 / P 2 ,
L = 1 - P 1 + P 2 P in ,

Metrics