Abstract

Real time recording and reading of volume transmission holograms were performed with dichromated polyvinyl alcohol thin solid films (31 μm) that were easy to prepare and use. Real time holograms of high diffraction efficiency were produced without any chemical development, but these films were not erasable. The present holographic study of dichromated polyvinyl alcohol films permits the consideration of many engineering applications.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Bartolini, H. A. Weakliem, B. F. Williams, “Review and Analysis of Optical Recording Media,” Opt. Eng. 15, 99–108 (1976).
    [CrossRef]
  2. H. J. Caulfield, Handbook of Holography (Academic, NewYork, 1979) pp. 277–298.
  3. T. A. Shankoff, “Phase Holograms in Dichromated Gelatin,” Appl. Opt. 7, 2101–2105 (1968).
    [CrossRef] [PubMed]
  4. B. J. Chang, “Dichromated Gelatin Hologramsand Their Applications,” Opt. Eng. 19, 642–648 (1980).
    [CrossRef]
  5. B. J. Chang, C. D. Leonard, “Dichromated Gelatin for the Fabrication of Holographic Optical Elements,” Appl. Opt. 18, 2407–2417 (1979).
    [CrossRef] [PubMed]
  6. C. Solano, R. A. Lessard, “Phase Gratings formed by Induced Anisotropy in Dyed Gelatin Plates,” Appl. Opt. 24, 1776–1779 (1985).
    [CrossRef] [PubMed]
  7. I. Maksymik, “Automatisation de la mesure de la F.T.M. des milieux enregistreurs,” Thèse M.Sc., Université Laval, Ste-Foy, Québec, Canada (1987).
  8. J. J. A. Couture, R. A. Lessard, “Modulation Transfer Function Measurements for Thin Layers of Azo Dyes in PVA Matrix Used as an Optical Recording Material,” Appl. Opt. 27, 3368–3381 (1988).
    [CrossRef] [PubMed]
  9. J. J. A. Couture, D. Tanguay, “Improvements of a Spatial Frequency Analzyer: Automated Characterization of Holographic Recording Materials,” Appl. Opt.1989 (submitted for publication).
  10. J. Kosar, Light Sensitive Systems (Wiley, New York, 1965) pp. 46–103.
  11. M. Sasaki, K. Honda, Kikuchi, “Studies on Photosensitive Dichromated Materials,” Rep. Inst. Ind. Sci. Univ. Tokyo, 27, 1–588 (1978).
  12. Present work is conducted to know the best experimental conditions that would permit the use of DC-PVA films as a true relief recording material (see Ref. 16). We are studying a new fixing technique to produce high diffraction efficiency volume holograms.
  13. J. A. Couture, R. A. Lessard, “Effective Thickness Determination for Volume Transmission Multiplex Holograms,” Can. J. Phys. 64, 553–557 (1986).
    [CrossRef]
  14. S. K. Case, “Coupled-Wave Theory for Multiply Exposed Thick Holographic Gratings,” J. Opt. Soc. Am. 65, 724–729 (1975).
    [CrossRef]
  15. J. J. A. Couture, R. A. Lessard, “Diffraction Efficiency Changes Induced by Coupling Effects Between Gratings of Transmission Holograms,” Optik Stuttgart 68, 69–80 (1984).
  16. F. Ziping, Z. Jugin, H. Dahsiung, “Study and Application of Dichromated Recording Materials,” Guangxue Xuebao 4, 1101–1106 (1984).

1988 (1)

1986 (1)

J. A. Couture, R. A. Lessard, “Effective Thickness Determination for Volume Transmission Multiplex Holograms,” Can. J. Phys. 64, 553–557 (1986).
[CrossRef]

1985 (1)

1984 (2)

J. J. A. Couture, R. A. Lessard, “Diffraction Efficiency Changes Induced by Coupling Effects Between Gratings of Transmission Holograms,” Optik Stuttgart 68, 69–80 (1984).

F. Ziping, Z. Jugin, H. Dahsiung, “Study and Application of Dichromated Recording Materials,” Guangxue Xuebao 4, 1101–1106 (1984).

1980 (1)

B. J. Chang, “Dichromated Gelatin Hologramsand Their Applications,” Opt. Eng. 19, 642–648 (1980).
[CrossRef]

1979 (1)

1978 (1)

M. Sasaki, K. Honda, Kikuchi, “Studies on Photosensitive Dichromated Materials,” Rep. Inst. Ind. Sci. Univ. Tokyo, 27, 1–588 (1978).

1976 (1)

R. A. Bartolini, H. A. Weakliem, B. F. Williams, “Review and Analysis of Optical Recording Media,” Opt. Eng. 15, 99–108 (1976).
[CrossRef]

1975 (1)

1968 (1)

Bartolini, R. A.

R. A. Bartolini, H. A. Weakliem, B. F. Williams, “Review and Analysis of Optical Recording Media,” Opt. Eng. 15, 99–108 (1976).
[CrossRef]

Case, S. K.

Caulfield, H. J.

H. J. Caulfield, Handbook of Holography (Academic, NewYork, 1979) pp. 277–298.

Chang, B. J.

Couture, J. A.

J. A. Couture, R. A. Lessard, “Effective Thickness Determination for Volume Transmission Multiplex Holograms,” Can. J. Phys. 64, 553–557 (1986).
[CrossRef]

Couture, J. J. A.

J. J. A. Couture, R. A. Lessard, “Modulation Transfer Function Measurements for Thin Layers of Azo Dyes in PVA Matrix Used as an Optical Recording Material,” Appl. Opt. 27, 3368–3381 (1988).
[CrossRef] [PubMed]

J. J. A. Couture, R. A. Lessard, “Diffraction Efficiency Changes Induced by Coupling Effects Between Gratings of Transmission Holograms,” Optik Stuttgart 68, 69–80 (1984).

J. J. A. Couture, D. Tanguay, “Improvements of a Spatial Frequency Analzyer: Automated Characterization of Holographic Recording Materials,” Appl. Opt.1989 (submitted for publication).

Dahsiung, H.

F. Ziping, Z. Jugin, H. Dahsiung, “Study and Application of Dichromated Recording Materials,” Guangxue Xuebao 4, 1101–1106 (1984).

Honda, K.

M. Sasaki, K. Honda, Kikuchi, “Studies on Photosensitive Dichromated Materials,” Rep. Inst. Ind. Sci. Univ. Tokyo, 27, 1–588 (1978).

Jugin, Z.

F. Ziping, Z. Jugin, H. Dahsiung, “Study and Application of Dichromated Recording Materials,” Guangxue Xuebao 4, 1101–1106 (1984).

Kikuchi,

M. Sasaki, K. Honda, Kikuchi, “Studies on Photosensitive Dichromated Materials,” Rep. Inst. Ind. Sci. Univ. Tokyo, 27, 1–588 (1978).

Kosar, J.

J. Kosar, Light Sensitive Systems (Wiley, New York, 1965) pp. 46–103.

Leonard, C. D.

Lessard, R. A.

J. J. A. Couture, R. A. Lessard, “Modulation Transfer Function Measurements for Thin Layers of Azo Dyes in PVA Matrix Used as an Optical Recording Material,” Appl. Opt. 27, 3368–3381 (1988).
[CrossRef] [PubMed]

J. A. Couture, R. A. Lessard, “Effective Thickness Determination for Volume Transmission Multiplex Holograms,” Can. J. Phys. 64, 553–557 (1986).
[CrossRef]

C. Solano, R. A. Lessard, “Phase Gratings formed by Induced Anisotropy in Dyed Gelatin Plates,” Appl. Opt. 24, 1776–1779 (1985).
[CrossRef] [PubMed]

J. J. A. Couture, R. A. Lessard, “Diffraction Efficiency Changes Induced by Coupling Effects Between Gratings of Transmission Holograms,” Optik Stuttgart 68, 69–80 (1984).

Maksymik, I.

I. Maksymik, “Automatisation de la mesure de la F.T.M. des milieux enregistreurs,” Thèse M.Sc., Université Laval, Ste-Foy, Québec, Canada (1987).

Sasaki, M.

M. Sasaki, K. Honda, Kikuchi, “Studies on Photosensitive Dichromated Materials,” Rep. Inst. Ind. Sci. Univ. Tokyo, 27, 1–588 (1978).

Shankoff, T. A.

Solano, C.

Tanguay, D.

J. J. A. Couture, D. Tanguay, “Improvements of a Spatial Frequency Analzyer: Automated Characterization of Holographic Recording Materials,” Appl. Opt.1989 (submitted for publication).

Weakliem, H. A.

R. A. Bartolini, H. A. Weakliem, B. F. Williams, “Review and Analysis of Optical Recording Media,” Opt. Eng. 15, 99–108 (1976).
[CrossRef]

Williams, B. F.

R. A. Bartolini, H. A. Weakliem, B. F. Williams, “Review and Analysis of Optical Recording Media,” Opt. Eng. 15, 99–108 (1976).
[CrossRef]

Ziping, F.

F. Ziping, Z. Jugin, H. Dahsiung, “Study and Application of Dichromated Recording Materials,” Guangxue Xuebao 4, 1101–1106 (1984).

Appl. Opt. (4)

Can. J. Phys. (1)

J. A. Couture, R. A. Lessard, “Effective Thickness Determination for Volume Transmission Multiplex Holograms,” Can. J. Phys. 64, 553–557 (1986).
[CrossRef]

Guangxue Xuebao (1)

F. Ziping, Z. Jugin, H. Dahsiung, “Study and Application of Dichromated Recording Materials,” Guangxue Xuebao 4, 1101–1106 (1984).

J. Opt. Soc. Am. (1)

Opt. Eng. (2)

R. A. Bartolini, H. A. Weakliem, B. F. Williams, “Review and Analysis of Optical Recording Media,” Opt. Eng. 15, 99–108 (1976).
[CrossRef]

B. J. Chang, “Dichromated Gelatin Hologramsand Their Applications,” Opt. Eng. 19, 642–648 (1980).
[CrossRef]

Optik Stuttgart (1)

J. J. A. Couture, R. A. Lessard, “Diffraction Efficiency Changes Induced by Coupling Effects Between Gratings of Transmission Holograms,” Optik Stuttgart 68, 69–80 (1984).

Rep. Inst. Ind. Sci. Univ. Tokyo (1)

M. Sasaki, K. Honda, Kikuchi, “Studies on Photosensitive Dichromated Materials,” Rep. Inst. Ind. Sci. Univ. Tokyo, 27, 1–588 (1978).

Other (5)

Present work is conducted to know the best experimental conditions that would permit the use of DC-PVA films as a true relief recording material (see Ref. 16). We are studying a new fixing technique to produce high diffraction efficiency volume holograms.

I. Maksymik, “Automatisation de la mesure de la F.T.M. des milieux enregistreurs,” Thèse M.Sc., Université Laval, Ste-Foy, Québec, Canada (1987).

J. J. A. Couture, D. Tanguay, “Improvements of a Spatial Frequency Analzyer: Automated Characterization of Holographic Recording Materials,” Appl. Opt.1989 (submitted for publication).

J. Kosar, Light Sensitive Systems (Wiley, New York, 1965) pp. 46–103.

H. J. Caulfield, Handbook of Holography (Academic, NewYork, 1979) pp. 277–298.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Absorption spectra of material DC-PVA film (lower line) and thermally treated DC-PVA film. These spectra were recorded with a UV-VIS Hewlett-Packard 6450A spectrophotometer.

Fig. 2
Fig. 2

Basic real time recording setup.

Fig. 3
Fig. 3

Automated spatial frequency analyzer that rapidly gives the modulation transfer function of a studied film. This special apparatus has a complete informational system.

Fig. 4
Fig. 4

Reflection stabilization systems used.

Fig. 5
Fig. 5

Photocrosslinked PVA configurations after Sasaki, Honda and Kikuchi.11

Fig. 6
Fig. 6

Diffraction efficiency values dependence on total exposure; the dichromate concentration is a parameter and the two recording beams shared a common linear parallel polarization.

Fig. 7
Fig. 7

Diffraction efficiency of DC-PVA films dependence on exposure level. Linear recording is represented in the exposure range 0–400 mJ/cm2.

Fig. 8
Fig. 8

Same dependence studied for two recording beams having different power values. Total power of the two recording beams is a parameter.

Fig. 9
Fig. 9

Similar results for two linear crossed polarization beams.

Fig. 10
Fig. 10

Diffraction efficiency dependence on total exposure with different intensity beam ratio for parallel polarizations.

Fig. 11
Fig. 11

Similar curves obtained for linear crossed polarizations.

Fig. 12
Fig. 12

Polarization modulation transfer function curves of DC-PVA films.

Fig. 13
Fig. 13

Angular selectivity response of a DC-PVA film.

Fig. 14
Fig. 14

Recording and reading processes of a holographic beam splitter-combiner.

Fig. 15
Fig. 15

Large fringes easily produced by adjustable beam splitter-combiner recorded in a DC-PVA film.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

η = I 1 / I i
f = 1 Λ = 2 sin Θ λ ,
Q = 2 π λ D / n Λ 2
15 < Q < 991
14 ° < 2 Θ < 154 ° .
( i ) 2 HCr ( VI ) O 4 - + 3 CH 3 CH 2 - OH h ν , H + 2 Cr ( III ) OH 2 + + 3 CH 3 - CHO + 6 H 2 O ; ( ii ) 2 HCr ( VI ) O 4 - + 3 ( CH 3 ) 2 CH - OH h ν , H + 2 Cr ( III ) OH 2 + + 3 ( CH 3 ) 2 - CO + 6 H 2 O .
( NH 4 ) 2 Cr 2 O 7 Δ Cr 2 O 3 + N 2 + 4 H 2 O
η = I 1 / I t ,
Δ Θ 1 / 2 Λ / D .
η = sin 2 [ π n 1 D λ R cos Θ R ] ,

Metrics