Abstract

Ion beam sputter deposition (IBSD) is a useful technique for producing high performance optical coatings. It is possible with relatively simple methods to get a reasonable deposition rate over a sufficiently large area. However, thin films produced with this coating method had a relatively high amount of contaminants. The contaminants were analyzed by various techniques mainly by total reflection x-ray fluorescence. The influence of the contaminants on the performance of the optical coatings proved to be surprisingly low. Optical properties were investigated, mainly the refractive index, the absorption coefficient at 0.514 μm, the scattering behavior, and the damage threshold against high-power laser pulses at 1.06 μm.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. E. Harper, “Ion Beam Deposition,” in Thin Film Processes, J. L. Vossen, W. Kern, Eds. (Academic, New York, 1978).
  2. H. R. Kaufman, “Technology of Ion Beam Sources Used in Sputtering,” J. Vac. Sci. Technol. 15, 272–276 (1978).
    [CrossRef]
  3. H. R. Kaufman, J. M. E. Harper, J. J. Cuomo, “Developments in Broad-Beam, Ion-Source Technology and Applications,” J. Vac. Sci. Technol. 21, 764–767 (1982).
    [CrossRef]
  4. H. R. Kaufman, J. J. Cuomo, J. M. E. Harper, “Technology and Applications of Broad-Beam Ion Sources Used in Sputtering. Part I. Ion Source Technology,” J. Vac. Sci. Technol. 21, 725–736 (1982).
    [CrossRef]
  5. J. M. E. Harper, J. J. Cuomo, H. R. Kaufman, “Technology and Applications of Broad-Beam Ion Sources Used in Sputtering. Part II. Applications,” J. Vac. Sci. Technol. 21, 737–756 (1982).
    [CrossRef]
  6. H. R. Kaufman, “Broad-Beam Ion Sources: Present Status and Future Directions,” J. Vac. Sci. Technol. A 4, 764–771 (1986).
    [CrossRef]
  7. H. A. Macleod, “Ion Assisted Deposition of Thin Films,” in Proceedings of International Symposium on Trends and New Applications in Thin-Films, Strasbourg, France (1987).
  8. S. E. Barnes, D. C. Grindrod, T. W. Jolly, C. J. Shaw, “The Design of Industrial Systems for Ion Beam Sputter Deposition of Optical Coatings,” in Proceedings, IPAT’87, Brighton (1987).
  9. H. Pulker, “Modern Optical Coating Technologies,” Proc. Soc. Photo-Opt. Instrum. Eng. 1019, 138–147 (1988).
  10. M. Varasi, C. Misiano, L. Lasaponara, “Ion Beam Sputtering Deposition of Optical Thin Films,” in Proceedings, International Ion Engineering Congress, ISIAT’83 and IPAT’83, Kyoto (1983).
  11. Y. Yoneda, T. Horiuchi, “Optical Flats for Use in X-Ray Spectrochemical Microanalysis,” Rev. Sci. Instrum. 42, 1069–1070 (1971).
    [CrossRef]
  12. H. Aiginger, P. Wobrauschek, “A Method for Quantitative X-Ray Fluorescence Analysis in the Nanogram Region,” Nucl. Instrum. Methods 114, 157–158 (1974).
    [CrossRef]
  13. P. Wobrauschek, H. Aiginger, “Total-Reflection X-Ray Fluorescence Spectrometric Determination of Elements in Nanogram Amounts,” Anal. Chem. 47, 852–855 (1975).
    [CrossRef]
  14. P. Wobrauschek, H. Aiginger, “X-Ray Fluorescence Analysis in the ng-Region Using Total Reflection of the Primary Beam,” Spectrochim. Acta Part B 35, 607–614 (1980).
    [CrossRef]
  15. R.-P. Stossel, A. Prange, “Determination of Trace Elements in Rainwater by Total-Reflection X-Ray Fluorescence,” Anal. Chem. 57, 2880–2885 (1985).
    [CrossRef]
  16. H. A. Macleod, Thin-Film Optical Filters (Adam Hilger, Bristol, 1986).
    [CrossRef]
  17. D. P. Arndt et al., “Multiple Determination of the Optical Constants of Thin-Film Coating Materials,” Appl. Opt. 23, 3571–3596 (1984).
    [CrossRef] [PubMed]
  18. R. E. Klinger, C. K. Carniglia, “Optical and Crystalline Inhomogeneity in Evaporated Zirconia Films,” Appl. Opt. 24, 3184–3187 (1985).
    [CrossRef] [PubMed]
  19. J. Ebert, TH Hannover, F. R. Germany; private communication (1983).
  20. P. A. Temple, “The Measurement of Absorption in Thin Films by Laser Calorimetry,” Proc. Soc. Photo-Opt. Instrum. Eng. 652, 272–283 (1986).
  21. L. Mattsson, “Light Scattering and Characterization of Thin Films,” Proc. Soc. Photo. Opt. Instrum. Eng. 652, 215–220 (1986).
  22. L. Mattsson, “Total Integrated Scatter Measurement System For Quality Assessment of Coatings on Optical Surfaces,” Proc. Soc. Photo-Opt. Instrum. Eng. 652, 264–271 (1986).
  23. J. M. Elson, H. E. Bennett, J. M. Bennett, “Scattering From Optical Surfaces,” in Applied Optics and Optical Engineering, R. R. Shannon, J. C. Wyant, Eds. (Academic, New York, 1979).
  24. J. M. Bennett, J. M. Elson, J. P. Rahn, “Angle-Resolved Scattering: Comparison of Theory and Experiment,” Proc. Soc. Photo-Opt. Instrum. Eng. 401, 234–246 (1983).
  25. J. M. Elson, J. P. Rahn, J. M. Bennett, “Relationship of the Total Integrated Scattering From Multilayer-Coated Optics to Angle of Incidence, Polarization, Correlation Length, and Roughness Cross-Correlation Properties,” Appl. Opt. 22, 3207–3219 (1983).
    [CrossRef] [PubMed]
  26. J. M. Elson, J. M. Bennett, “Relation Between the Angular Dependence of Scattering and the Statistical Properties of Optical Surfaces,” J. Opt. Soc. Am. 69, 31–47 (1979).
    [CrossRef]
  27. W. H. Lowdermilk, D. Milam, “Laser-Induced Surface and Coating Damage,” IEEE J. Quantum Electron. QE-17, 1888–1903 (1981).
    [CrossRef]
  28. K. H. Guenther et al., “1.06-μm Laser Damage of Thin Film Optical Coatings: A Round-Robin Experiment Involving Various Pulse Lengths and Beam Diameters,” Appl. Opt. 23, 3743–3752 (1984).
    [CrossRef] [PubMed]
  29. S. C. Seitel, K. H. Guenther, “Toward Standardization in Laser Induced Damage Testing,” Proc. Soc. Photo. Opt. Instrum. Eng. 650, 147–153 (1986).

1988

H. Pulker, “Modern Optical Coating Technologies,” Proc. Soc. Photo-Opt. Instrum. Eng. 1019, 138–147 (1988).

1986

H. R. Kaufman, “Broad-Beam Ion Sources: Present Status and Future Directions,” J. Vac. Sci. Technol. A 4, 764–771 (1986).
[CrossRef]

P. A. Temple, “The Measurement of Absorption in Thin Films by Laser Calorimetry,” Proc. Soc. Photo-Opt. Instrum. Eng. 652, 272–283 (1986).

L. Mattsson, “Light Scattering and Characterization of Thin Films,” Proc. Soc. Photo. Opt. Instrum. Eng. 652, 215–220 (1986).

L. Mattsson, “Total Integrated Scatter Measurement System For Quality Assessment of Coatings on Optical Surfaces,” Proc. Soc. Photo-Opt. Instrum. Eng. 652, 264–271 (1986).

S. C. Seitel, K. H. Guenther, “Toward Standardization in Laser Induced Damage Testing,” Proc. Soc. Photo. Opt. Instrum. Eng. 650, 147–153 (1986).

1985

R.-P. Stossel, A. Prange, “Determination of Trace Elements in Rainwater by Total-Reflection X-Ray Fluorescence,” Anal. Chem. 57, 2880–2885 (1985).
[CrossRef]

R. E. Klinger, C. K. Carniglia, “Optical and Crystalline Inhomogeneity in Evaporated Zirconia Films,” Appl. Opt. 24, 3184–3187 (1985).
[CrossRef] [PubMed]

1984

1983

1982

H. R. Kaufman, J. M. E. Harper, J. J. Cuomo, “Developments in Broad-Beam, Ion-Source Technology and Applications,” J. Vac. Sci. Technol. 21, 764–767 (1982).
[CrossRef]

H. R. Kaufman, J. J. Cuomo, J. M. E. Harper, “Technology and Applications of Broad-Beam Ion Sources Used in Sputtering. Part I. Ion Source Technology,” J. Vac. Sci. Technol. 21, 725–736 (1982).
[CrossRef]

J. M. E. Harper, J. J. Cuomo, H. R. Kaufman, “Technology and Applications of Broad-Beam Ion Sources Used in Sputtering. Part II. Applications,” J. Vac. Sci. Technol. 21, 737–756 (1982).
[CrossRef]

1981

W. H. Lowdermilk, D. Milam, “Laser-Induced Surface and Coating Damage,” IEEE J. Quantum Electron. QE-17, 1888–1903 (1981).
[CrossRef]

1980

P. Wobrauschek, H. Aiginger, “X-Ray Fluorescence Analysis in the ng-Region Using Total Reflection of the Primary Beam,” Spectrochim. Acta Part B 35, 607–614 (1980).
[CrossRef]

1979

1978

H. R. Kaufman, “Technology of Ion Beam Sources Used in Sputtering,” J. Vac. Sci. Technol. 15, 272–276 (1978).
[CrossRef]

1975

P. Wobrauschek, H. Aiginger, “Total-Reflection X-Ray Fluorescence Spectrometric Determination of Elements in Nanogram Amounts,” Anal. Chem. 47, 852–855 (1975).
[CrossRef]

1974

H. Aiginger, P. Wobrauschek, “A Method for Quantitative X-Ray Fluorescence Analysis in the Nanogram Region,” Nucl. Instrum. Methods 114, 157–158 (1974).
[CrossRef]

1971

Y. Yoneda, T. Horiuchi, “Optical Flats for Use in X-Ray Spectrochemical Microanalysis,” Rev. Sci. Instrum. 42, 1069–1070 (1971).
[CrossRef]

Aiginger, H.

P. Wobrauschek, H. Aiginger, “X-Ray Fluorescence Analysis in the ng-Region Using Total Reflection of the Primary Beam,” Spectrochim. Acta Part B 35, 607–614 (1980).
[CrossRef]

P. Wobrauschek, H. Aiginger, “Total-Reflection X-Ray Fluorescence Spectrometric Determination of Elements in Nanogram Amounts,” Anal. Chem. 47, 852–855 (1975).
[CrossRef]

H. Aiginger, P. Wobrauschek, “A Method for Quantitative X-Ray Fluorescence Analysis in the Nanogram Region,” Nucl. Instrum. Methods 114, 157–158 (1974).
[CrossRef]

Arndt, D. P.

Barnes, S. E.

S. E. Barnes, D. C. Grindrod, T. W. Jolly, C. J. Shaw, “The Design of Industrial Systems for Ion Beam Sputter Deposition of Optical Coatings,” in Proceedings, IPAT’87, Brighton (1987).

Bennett, H. E.

J. M. Elson, H. E. Bennett, J. M. Bennett, “Scattering From Optical Surfaces,” in Applied Optics and Optical Engineering, R. R. Shannon, J. C. Wyant, Eds. (Academic, New York, 1979).

Bennett, J. M.

J. M. Elson, J. P. Rahn, J. M. Bennett, “Relationship of the Total Integrated Scattering From Multilayer-Coated Optics to Angle of Incidence, Polarization, Correlation Length, and Roughness Cross-Correlation Properties,” Appl. Opt. 22, 3207–3219 (1983).
[CrossRef] [PubMed]

J. M. Bennett, J. M. Elson, J. P. Rahn, “Angle-Resolved Scattering: Comparison of Theory and Experiment,” Proc. Soc. Photo-Opt. Instrum. Eng. 401, 234–246 (1983).

J. M. Elson, J. M. Bennett, “Relation Between the Angular Dependence of Scattering and the Statistical Properties of Optical Surfaces,” J. Opt. Soc. Am. 69, 31–47 (1979).
[CrossRef]

J. M. Elson, H. E. Bennett, J. M. Bennett, “Scattering From Optical Surfaces,” in Applied Optics and Optical Engineering, R. R. Shannon, J. C. Wyant, Eds. (Academic, New York, 1979).

Carniglia, C. K.

Cuomo, J. J.

H. R. Kaufman, J. M. E. Harper, J. J. Cuomo, “Developments in Broad-Beam, Ion-Source Technology and Applications,” J. Vac. Sci. Technol. 21, 764–767 (1982).
[CrossRef]

J. M. E. Harper, J. J. Cuomo, H. R. Kaufman, “Technology and Applications of Broad-Beam Ion Sources Used in Sputtering. Part II. Applications,” J. Vac. Sci. Technol. 21, 737–756 (1982).
[CrossRef]

H. R. Kaufman, J. J. Cuomo, J. M. E. Harper, “Technology and Applications of Broad-Beam Ion Sources Used in Sputtering. Part I. Ion Source Technology,” J. Vac. Sci. Technol. 21, 725–736 (1982).
[CrossRef]

Ebert, J.

J. Ebert, TH Hannover, F. R. Germany; private communication (1983).

Elson, J. M.

J. M. Elson, J. P. Rahn, J. M. Bennett, “Relationship of the Total Integrated Scattering From Multilayer-Coated Optics to Angle of Incidence, Polarization, Correlation Length, and Roughness Cross-Correlation Properties,” Appl. Opt. 22, 3207–3219 (1983).
[CrossRef] [PubMed]

J. M. Bennett, J. M. Elson, J. P. Rahn, “Angle-Resolved Scattering: Comparison of Theory and Experiment,” Proc. Soc. Photo-Opt. Instrum. Eng. 401, 234–246 (1983).

J. M. Elson, J. M. Bennett, “Relation Between the Angular Dependence of Scattering and the Statistical Properties of Optical Surfaces,” J. Opt. Soc. Am. 69, 31–47 (1979).
[CrossRef]

J. M. Elson, H. E. Bennett, J. M. Bennett, “Scattering From Optical Surfaces,” in Applied Optics and Optical Engineering, R. R. Shannon, J. C. Wyant, Eds. (Academic, New York, 1979).

Germany, F. R.

J. Ebert, TH Hannover, F. R. Germany; private communication (1983).

Grindrod, D. C.

S. E. Barnes, D. C. Grindrod, T. W. Jolly, C. J. Shaw, “The Design of Industrial Systems for Ion Beam Sputter Deposition of Optical Coatings,” in Proceedings, IPAT’87, Brighton (1987).

Guenther, K. H.

S. C. Seitel, K. H. Guenther, “Toward Standardization in Laser Induced Damage Testing,” Proc. Soc. Photo. Opt. Instrum. Eng. 650, 147–153 (1986).

K. H. Guenther et al., “1.06-μm Laser Damage of Thin Film Optical Coatings: A Round-Robin Experiment Involving Various Pulse Lengths and Beam Diameters,” Appl. Opt. 23, 3743–3752 (1984).
[CrossRef] [PubMed]

Hannover, TH

J. Ebert, TH Hannover, F. R. Germany; private communication (1983).

Harper, J. M. E.

H. R. Kaufman, J. J. Cuomo, J. M. E. Harper, “Technology and Applications of Broad-Beam Ion Sources Used in Sputtering. Part I. Ion Source Technology,” J. Vac. Sci. Technol. 21, 725–736 (1982).
[CrossRef]

J. M. E. Harper, J. J. Cuomo, H. R. Kaufman, “Technology and Applications of Broad-Beam Ion Sources Used in Sputtering. Part II. Applications,” J. Vac. Sci. Technol. 21, 737–756 (1982).
[CrossRef]

H. R. Kaufman, J. M. E. Harper, J. J. Cuomo, “Developments in Broad-Beam, Ion-Source Technology and Applications,” J. Vac. Sci. Technol. 21, 764–767 (1982).
[CrossRef]

J. M. E. Harper, “Ion Beam Deposition,” in Thin Film Processes, J. L. Vossen, W. Kern, Eds. (Academic, New York, 1978).

Horiuchi, T.

Y. Yoneda, T. Horiuchi, “Optical Flats for Use in X-Ray Spectrochemical Microanalysis,” Rev. Sci. Instrum. 42, 1069–1070 (1971).
[CrossRef]

Jolly, T. W.

S. E. Barnes, D. C. Grindrod, T. W. Jolly, C. J. Shaw, “The Design of Industrial Systems for Ion Beam Sputter Deposition of Optical Coatings,” in Proceedings, IPAT’87, Brighton (1987).

Kaufman, H. R.

H. R. Kaufman, “Broad-Beam Ion Sources: Present Status and Future Directions,” J. Vac. Sci. Technol. A 4, 764–771 (1986).
[CrossRef]

H. R. Kaufman, J. J. Cuomo, J. M. E. Harper, “Technology and Applications of Broad-Beam Ion Sources Used in Sputtering. Part I. Ion Source Technology,” J. Vac. Sci. Technol. 21, 725–736 (1982).
[CrossRef]

H. R. Kaufman, J. M. E. Harper, J. J. Cuomo, “Developments in Broad-Beam, Ion-Source Technology and Applications,” J. Vac. Sci. Technol. 21, 764–767 (1982).
[CrossRef]

J. M. E. Harper, J. J. Cuomo, H. R. Kaufman, “Technology and Applications of Broad-Beam Ion Sources Used in Sputtering. Part II. Applications,” J. Vac. Sci. Technol. 21, 737–756 (1982).
[CrossRef]

H. R. Kaufman, “Technology of Ion Beam Sources Used in Sputtering,” J. Vac. Sci. Technol. 15, 272–276 (1978).
[CrossRef]

Klinger, R. E.

Lasaponara, L.

M. Varasi, C. Misiano, L. Lasaponara, “Ion Beam Sputtering Deposition of Optical Thin Films,” in Proceedings, International Ion Engineering Congress, ISIAT’83 and IPAT’83, Kyoto (1983).

Lowdermilk, W. H.

W. H. Lowdermilk, D. Milam, “Laser-Induced Surface and Coating Damage,” IEEE J. Quantum Electron. QE-17, 1888–1903 (1981).
[CrossRef]

Macleod, H. A.

H. A. Macleod, “Ion Assisted Deposition of Thin Films,” in Proceedings of International Symposium on Trends and New Applications in Thin-Films, Strasbourg, France (1987).

H. A. Macleod, Thin-Film Optical Filters (Adam Hilger, Bristol, 1986).
[CrossRef]

Mattsson, L.

L. Mattsson, “Total Integrated Scatter Measurement System For Quality Assessment of Coatings on Optical Surfaces,” Proc. Soc. Photo-Opt. Instrum. Eng. 652, 264–271 (1986).

L. Mattsson, “Light Scattering and Characterization of Thin Films,” Proc. Soc. Photo. Opt. Instrum. Eng. 652, 215–220 (1986).

Milam, D.

W. H. Lowdermilk, D. Milam, “Laser-Induced Surface and Coating Damage,” IEEE J. Quantum Electron. QE-17, 1888–1903 (1981).
[CrossRef]

Misiano, C.

M. Varasi, C. Misiano, L. Lasaponara, “Ion Beam Sputtering Deposition of Optical Thin Films,” in Proceedings, International Ion Engineering Congress, ISIAT’83 and IPAT’83, Kyoto (1983).

Prange, A.

R.-P. Stossel, A. Prange, “Determination of Trace Elements in Rainwater by Total-Reflection X-Ray Fluorescence,” Anal. Chem. 57, 2880–2885 (1985).
[CrossRef]

Pulker, H.

H. Pulker, “Modern Optical Coating Technologies,” Proc. Soc. Photo-Opt. Instrum. Eng. 1019, 138–147 (1988).

Rahn, J. P.

Seitel, S. C.

S. C. Seitel, K. H. Guenther, “Toward Standardization in Laser Induced Damage Testing,” Proc. Soc. Photo. Opt. Instrum. Eng. 650, 147–153 (1986).

Shaw, C. J.

S. E. Barnes, D. C. Grindrod, T. W. Jolly, C. J. Shaw, “The Design of Industrial Systems for Ion Beam Sputter Deposition of Optical Coatings,” in Proceedings, IPAT’87, Brighton (1987).

Stossel, R.-P.

R.-P. Stossel, A. Prange, “Determination of Trace Elements in Rainwater by Total-Reflection X-Ray Fluorescence,” Anal. Chem. 57, 2880–2885 (1985).
[CrossRef]

Temple, P. A.

P. A. Temple, “The Measurement of Absorption in Thin Films by Laser Calorimetry,” Proc. Soc. Photo-Opt. Instrum. Eng. 652, 272–283 (1986).

Varasi, M.

M. Varasi, C. Misiano, L. Lasaponara, “Ion Beam Sputtering Deposition of Optical Thin Films,” in Proceedings, International Ion Engineering Congress, ISIAT’83 and IPAT’83, Kyoto (1983).

Wobrauschek, P.

P. Wobrauschek, H. Aiginger, “X-Ray Fluorescence Analysis in the ng-Region Using Total Reflection of the Primary Beam,” Spectrochim. Acta Part B 35, 607–614 (1980).
[CrossRef]

P. Wobrauschek, H. Aiginger, “Total-Reflection X-Ray Fluorescence Spectrometric Determination of Elements in Nanogram Amounts,” Anal. Chem. 47, 852–855 (1975).
[CrossRef]

H. Aiginger, P. Wobrauschek, “A Method for Quantitative X-Ray Fluorescence Analysis in the Nanogram Region,” Nucl. Instrum. Methods 114, 157–158 (1974).
[CrossRef]

Yoneda, Y.

Y. Yoneda, T. Horiuchi, “Optical Flats for Use in X-Ray Spectrochemical Microanalysis,” Rev. Sci. Instrum. 42, 1069–1070 (1971).
[CrossRef]

Anal. Chem.

P. Wobrauschek, H. Aiginger, “Total-Reflection X-Ray Fluorescence Spectrometric Determination of Elements in Nanogram Amounts,” Anal. Chem. 47, 852–855 (1975).
[CrossRef]

R.-P. Stossel, A. Prange, “Determination of Trace Elements in Rainwater by Total-Reflection X-Ray Fluorescence,” Anal. Chem. 57, 2880–2885 (1985).
[CrossRef]

Appl. Opt.

IEEE J. Quantum Electron.

W. H. Lowdermilk, D. Milam, “Laser-Induced Surface and Coating Damage,” IEEE J. Quantum Electron. QE-17, 1888–1903 (1981).
[CrossRef]

J. Opt. Soc. Am.

J. Vac. Sci. Technol.

H. R. Kaufman, “Technology of Ion Beam Sources Used in Sputtering,” J. Vac. Sci. Technol. 15, 272–276 (1978).
[CrossRef]

H. R. Kaufman, J. M. E. Harper, J. J. Cuomo, “Developments in Broad-Beam, Ion-Source Technology and Applications,” J. Vac. Sci. Technol. 21, 764–767 (1982).
[CrossRef]

H. R. Kaufman, J. J. Cuomo, J. M. E. Harper, “Technology and Applications of Broad-Beam Ion Sources Used in Sputtering. Part I. Ion Source Technology,” J. Vac. Sci. Technol. 21, 725–736 (1982).
[CrossRef]

J. M. E. Harper, J. J. Cuomo, H. R. Kaufman, “Technology and Applications of Broad-Beam Ion Sources Used in Sputtering. Part II. Applications,” J. Vac. Sci. Technol. 21, 737–756 (1982).
[CrossRef]

J. Vac. Sci. Technol. A

H. R. Kaufman, “Broad-Beam Ion Sources: Present Status and Future Directions,” J. Vac. Sci. Technol. A 4, 764–771 (1986).
[CrossRef]

Nucl. Instrum. Methods

H. Aiginger, P. Wobrauschek, “A Method for Quantitative X-Ray Fluorescence Analysis in the Nanogram Region,” Nucl. Instrum. Methods 114, 157–158 (1974).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng.

J. M. Bennett, J. M. Elson, J. P. Rahn, “Angle-Resolved Scattering: Comparison of Theory and Experiment,” Proc. Soc. Photo-Opt. Instrum. Eng. 401, 234–246 (1983).

H. Pulker, “Modern Optical Coating Technologies,” Proc. Soc. Photo-Opt. Instrum. Eng. 1019, 138–147 (1988).

P. A. Temple, “The Measurement of Absorption in Thin Films by Laser Calorimetry,” Proc. Soc. Photo-Opt. Instrum. Eng. 652, 272–283 (1986).

L. Mattsson, “Total Integrated Scatter Measurement System For Quality Assessment of Coatings on Optical Surfaces,” Proc. Soc. Photo-Opt. Instrum. Eng. 652, 264–271 (1986).

Proc. Soc. Photo. Opt. Instrum. Eng.

L. Mattsson, “Light Scattering and Characterization of Thin Films,” Proc. Soc. Photo. Opt. Instrum. Eng. 652, 215–220 (1986).

S. C. Seitel, K. H. Guenther, “Toward Standardization in Laser Induced Damage Testing,” Proc. Soc. Photo. Opt. Instrum. Eng. 650, 147–153 (1986).

Rev. Sci. Instrum.

Y. Yoneda, T. Horiuchi, “Optical Flats for Use in X-Ray Spectrochemical Microanalysis,” Rev. Sci. Instrum. 42, 1069–1070 (1971).
[CrossRef]

Spectrochim. Acta Part B

P. Wobrauschek, H. Aiginger, “X-Ray Fluorescence Analysis in the ng-Region Using Total Reflection of the Primary Beam,” Spectrochim. Acta Part B 35, 607–614 (1980).
[CrossRef]

Other

H. A. Macleod, Thin-Film Optical Filters (Adam Hilger, Bristol, 1986).
[CrossRef]

J. Ebert, TH Hannover, F. R. Germany; private communication (1983).

J. M. Elson, H. E. Bennett, J. M. Bennett, “Scattering From Optical Surfaces,” in Applied Optics and Optical Engineering, R. R. Shannon, J. C. Wyant, Eds. (Academic, New York, 1979).

J. M. E. Harper, “Ion Beam Deposition,” in Thin Film Processes, J. L. Vossen, W. Kern, Eds. (Academic, New York, 1978).

M. Varasi, C. Misiano, L. Lasaponara, “Ion Beam Sputtering Deposition of Optical Thin Films,” in Proceedings, International Ion Engineering Congress, ISIAT’83 and IPAT’83, Kyoto (1983).

H. A. Macleod, “Ion Assisted Deposition of Thin Films,” in Proceedings of International Symposium on Trends and New Applications in Thin-Films, Strasbourg, France (1987).

S. E. Barnes, D. C. Grindrod, T. W. Jolly, C. J. Shaw, “The Design of Industrial Systems for Ion Beam Sputter Deposition of Optical Coatings,” in Proceedings, IPAT’87, Brighton (1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of the deposition system.

Fig. 2
Fig. 2

Deposition rates of Ta2O5 for geometric thickness on the rotating substrate holder: ion energy is the parameter; the ion beam current was kept constant at 100 mA. For two ion energies the effect of a coating mask is demonstrated.

Fig. 3
Fig. 3

Schematic of the TXRF analyzer.

Fig. 4
Fig. 4

Refractive indices of TiO2 and Ta2O5 for different starting materials and oxygen partial pressures; all the layers were deposited with 100-mA/1200-eV; Ta2O5 is from Ta2O5 at 4 × 10−5-mbar O2, TiO2 − 1 is from TiO2 at 4 × 10−5-mbar O2, TiO2 − 2 is from TiO2 at 12 × 10−5-mbar O2, and TiO2 − 3 is from Ti at 4 × 10−5-mbar O2.

Fig. 5
Fig. 5

Absorption values for a QWOT design of type (Ta2O5/SiO2)(n−1)/2T2O5 for different numbers of layers; the deposition parameters are 100-mA/1200-eV/4 × 10−5-mbar O2.

Fig. 6
Fig. 6

TIS values for a QWOT design of type (Ta2O5/SiO2)(n−2)/2Ta2O5 for different numbers of layers; the deposition parameters are 100-mA/1200-eV/4 × 10−5-mbar.

Fig. 7
Fig. 7

Differential power scattered per solid angle normalized to the incident power and the reflection for an ion beam sputtered multilayer system (Ta2O5/SiO2)14Ta2O5 (squares), an ion beam sputtered aluminum layer (circles), and an electron beam evaporated multilayer (×).

Fig. 8
Fig. 8

Differential power scattered per unit solid angle normalized to the incident power and the reflection for an ion beam sputtered multilayer system (Ta2O5/SiO2)14Ta2O5 (squares), an ion beam sputtered Ta2O5 single layer (3 * QWOT, solid squares), an electron beam evaporated multilayer system (circles), an electron beam evaporated Ta2O5 single layer (3 * QWOT, solid circles), and an electron beam evaporated TiO2 single layer (3 * QWOT, ×).

Fig. 9
Fig. 9

LIDT values for a QWOT design of type (Ta2O5/SiO2)(n−1)/2Ta2O5 for different numbers of layers; the whole bar shows Fth, the lower part shows Fmin,ND; the deposition parameters are 100-mA/1200-eV/4 × 10−5-mbar O2.

Tables (2)

Tables Icon

Table I Dominant Contaminants in TiO2 Layers

Tables Icon

Table II Refractive Indices of Ta2O5 and TiO2 at 0.55 and 1.06 μm for Different Oxygen Partial Pressures and Starting Materials

Metrics