Abstract

Kinoforms manufactured in photoresist by photolithographic techniques using a single, ten-level, grey scale photomask, exposed in a specially designed laser exposure system, are described. Kinoforms designed for uniform as well as for partial Gaussian beam illumination are discussed. The highest measured diffraction efficiency was 55%. Photoresist kinoforms were transferred into quartz substrates by reactive ion etching. The highest measured diffraction efficiency for the resulting all-quartz kinoforms was 53%.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. B. Lesem, P. M. Hirsch, J. A. Jordan, “The Kinoform: a New Wavefront Reconstruction Device,” IBM J. Res. Dev. 13, 150–155 (1969).
    [CrossRef]
  2. J. P. Riley, F. N. Birkett, “A Reflection Kinoform for Use with a CO2 Laser,” Opt. Acta 24, 999–1009 (1977).
    [CrossRef]
  3. V. P. Koronkevich et al., “Fabrication of Kinoform Optical Elements,” Optik 67, 257–266 (1984).
  4. I. A. Mikhaltsova, V. I. Navivaiko, I. S. Soldatenkov, “Kinoform Axicons,” Optik 67, 267–277 (1984).
  5. J. R. Leger, M. L. Scott, P. Bundman, M. P. Griswold, “Astigmatic Wavefront Correction of Gain-Guided Laser Diode Array Using Anamorphic Diffractive Microlenses,” Proc. Soc. Photo-Opt. Instrum. Eng. 884, 82–89 (1988).
  6. G. J. Swanson, W. B. Veldkamp, “Diffractive Optical Elements for Use in Infrared Systems,” Opt. Eng. 28, 605–608 (1989).
    [CrossRef]
  7. K. M. Flood, J. M. Finlan, “Multiple Phase Level Computer-Generated Holograms Etched in Fused Silica,” Proc. Soc. Photo-Opt. Instrum. Eng. 1052, 91–96 (1989).
  8. S. Jacobsson, S. Hård, A. Bolle, “Partially Illuminated Kinoforms: a Computer Study,” Appl. Opt. 26, 2773–2781 (1987).
    [CrossRef] [PubMed]
  9. R. W. Gerchberg, W. O. Saxton, “A Practical Algorithm for the Determination of Phase from Image and Diffraction Plane Pictures,” Optik 35, 237–246 (1972).
  10. B. Golja, J. A. Barkanic, A. Hoff, “A Review of Nitrogen Trifluoride for Dry Etching in Microelectronics Processing,” Microelectron. J. 16, 5–21 (1985).
    [CrossRef]
  11. Perfect generation of a desired diffraction pattern (η1 = 1) generally requires both phase and amplitude modulation. This can, for example, be realized by sandwiching a kinoform and an amplitude transmission hologram. However, the drawback is that ~50% of the incident power is absorbed by the amplitude hologram, which reduces the overall efficiency.
  12. For better characterization of the kinoform quality their diffraction patterns have to be quantified using additional measures besides diffraction efficiency, such as the standard deviation or the cross correlation of the obtained patterns relative to the intended ones.8
  13. The spiral iteration procedure uses a partially illuminating Gaussian beam, which is allowed to move over the kinoform surface during the iteration process. The calculated kinoform phase is gradually built up by adding contributions from the kinoform areas traversed by the moving beam. The diffraction pattern quality of the resulting kinoform is insensitive to the location of the illuminating beam.8
  14. M. Ekberg, M. Larsson, S. Hård, B. Nilsson, “Multilevel Phase Holograms Manufactured by Electron Beam Lithography,” Opt. Lett. 15, 568–569 (1990).
    [CrossRef] [PubMed]

1990 (1)

1989 (2)

G. J. Swanson, W. B. Veldkamp, “Diffractive Optical Elements for Use in Infrared Systems,” Opt. Eng. 28, 605–608 (1989).
[CrossRef]

K. M. Flood, J. M. Finlan, “Multiple Phase Level Computer-Generated Holograms Etched in Fused Silica,” Proc. Soc. Photo-Opt. Instrum. Eng. 1052, 91–96 (1989).

1988 (1)

J. R. Leger, M. L. Scott, P. Bundman, M. P. Griswold, “Astigmatic Wavefront Correction of Gain-Guided Laser Diode Array Using Anamorphic Diffractive Microlenses,” Proc. Soc. Photo-Opt. Instrum. Eng. 884, 82–89 (1988).

1987 (1)

1985 (1)

B. Golja, J. A. Barkanic, A. Hoff, “A Review of Nitrogen Trifluoride for Dry Etching in Microelectronics Processing,” Microelectron. J. 16, 5–21 (1985).
[CrossRef]

1984 (2)

V. P. Koronkevich et al., “Fabrication of Kinoform Optical Elements,” Optik 67, 257–266 (1984).

I. A. Mikhaltsova, V. I. Navivaiko, I. S. Soldatenkov, “Kinoform Axicons,” Optik 67, 267–277 (1984).

1977 (1)

J. P. Riley, F. N. Birkett, “A Reflection Kinoform for Use with a CO2 Laser,” Opt. Acta 24, 999–1009 (1977).
[CrossRef]

1972 (1)

R. W. Gerchberg, W. O. Saxton, “A Practical Algorithm for the Determination of Phase from Image and Diffraction Plane Pictures,” Optik 35, 237–246 (1972).

1969 (1)

L. B. Lesem, P. M. Hirsch, J. A. Jordan, “The Kinoform: a New Wavefront Reconstruction Device,” IBM J. Res. Dev. 13, 150–155 (1969).
[CrossRef]

Barkanic, J. A.

B. Golja, J. A. Barkanic, A. Hoff, “A Review of Nitrogen Trifluoride for Dry Etching in Microelectronics Processing,” Microelectron. J. 16, 5–21 (1985).
[CrossRef]

Birkett, F. N.

J. P. Riley, F. N. Birkett, “A Reflection Kinoform for Use with a CO2 Laser,” Opt. Acta 24, 999–1009 (1977).
[CrossRef]

Bolle, A.

Bundman, P.

J. R. Leger, M. L. Scott, P. Bundman, M. P. Griswold, “Astigmatic Wavefront Correction of Gain-Guided Laser Diode Array Using Anamorphic Diffractive Microlenses,” Proc. Soc. Photo-Opt. Instrum. Eng. 884, 82–89 (1988).

Ekberg, M.

Finlan, J. M.

K. M. Flood, J. M. Finlan, “Multiple Phase Level Computer-Generated Holograms Etched in Fused Silica,” Proc. Soc. Photo-Opt. Instrum. Eng. 1052, 91–96 (1989).

Flood, K. M.

K. M. Flood, J. M. Finlan, “Multiple Phase Level Computer-Generated Holograms Etched in Fused Silica,” Proc. Soc. Photo-Opt. Instrum. Eng. 1052, 91–96 (1989).

Gerchberg, R. W.

R. W. Gerchberg, W. O. Saxton, “A Practical Algorithm for the Determination of Phase from Image and Diffraction Plane Pictures,” Optik 35, 237–246 (1972).

Golja, B.

B. Golja, J. A. Barkanic, A. Hoff, “A Review of Nitrogen Trifluoride for Dry Etching in Microelectronics Processing,” Microelectron. J. 16, 5–21 (1985).
[CrossRef]

Griswold, M. P.

J. R. Leger, M. L. Scott, P. Bundman, M. P. Griswold, “Astigmatic Wavefront Correction of Gain-Guided Laser Diode Array Using Anamorphic Diffractive Microlenses,” Proc. Soc. Photo-Opt. Instrum. Eng. 884, 82–89 (1988).

Hård, S.

Hirsch, P. M.

L. B. Lesem, P. M. Hirsch, J. A. Jordan, “The Kinoform: a New Wavefront Reconstruction Device,” IBM J. Res. Dev. 13, 150–155 (1969).
[CrossRef]

Hoff, A.

B. Golja, J. A. Barkanic, A. Hoff, “A Review of Nitrogen Trifluoride for Dry Etching in Microelectronics Processing,” Microelectron. J. 16, 5–21 (1985).
[CrossRef]

Jacobsson, S.

Jordan, J. A.

L. B. Lesem, P. M. Hirsch, J. A. Jordan, “The Kinoform: a New Wavefront Reconstruction Device,” IBM J. Res. Dev. 13, 150–155 (1969).
[CrossRef]

Koronkevich, V. P.

V. P. Koronkevich et al., “Fabrication of Kinoform Optical Elements,” Optik 67, 257–266 (1984).

Larsson, M.

Leger, J. R.

J. R. Leger, M. L. Scott, P. Bundman, M. P. Griswold, “Astigmatic Wavefront Correction of Gain-Guided Laser Diode Array Using Anamorphic Diffractive Microlenses,” Proc. Soc. Photo-Opt. Instrum. Eng. 884, 82–89 (1988).

Lesem, L. B.

L. B. Lesem, P. M. Hirsch, J. A. Jordan, “The Kinoform: a New Wavefront Reconstruction Device,” IBM J. Res. Dev. 13, 150–155 (1969).
[CrossRef]

Mikhaltsova, I. A.

I. A. Mikhaltsova, V. I. Navivaiko, I. S. Soldatenkov, “Kinoform Axicons,” Optik 67, 267–277 (1984).

Navivaiko, V. I.

I. A. Mikhaltsova, V. I. Navivaiko, I. S. Soldatenkov, “Kinoform Axicons,” Optik 67, 267–277 (1984).

Nilsson, B.

Riley, J. P.

J. P. Riley, F. N. Birkett, “A Reflection Kinoform for Use with a CO2 Laser,” Opt. Acta 24, 999–1009 (1977).
[CrossRef]

Saxton, W. O.

R. W. Gerchberg, W. O. Saxton, “A Practical Algorithm for the Determination of Phase from Image and Diffraction Plane Pictures,” Optik 35, 237–246 (1972).

Scott, M. L.

J. R. Leger, M. L. Scott, P. Bundman, M. P. Griswold, “Astigmatic Wavefront Correction of Gain-Guided Laser Diode Array Using Anamorphic Diffractive Microlenses,” Proc. Soc. Photo-Opt. Instrum. Eng. 884, 82–89 (1988).

Soldatenkov, I. S.

I. A. Mikhaltsova, V. I. Navivaiko, I. S. Soldatenkov, “Kinoform Axicons,” Optik 67, 267–277 (1984).

Swanson, G. J.

G. J. Swanson, W. B. Veldkamp, “Diffractive Optical Elements for Use in Infrared Systems,” Opt. Eng. 28, 605–608 (1989).
[CrossRef]

Veldkamp, W. B.

G. J. Swanson, W. B. Veldkamp, “Diffractive Optical Elements for Use in Infrared Systems,” Opt. Eng. 28, 605–608 (1989).
[CrossRef]

Appl. Opt. (1)

IBM J. Res. Dev. (1)

L. B. Lesem, P. M. Hirsch, J. A. Jordan, “The Kinoform: a New Wavefront Reconstruction Device,” IBM J. Res. Dev. 13, 150–155 (1969).
[CrossRef]

Microelectron. J. (1)

B. Golja, J. A. Barkanic, A. Hoff, “A Review of Nitrogen Trifluoride for Dry Etching in Microelectronics Processing,” Microelectron. J. 16, 5–21 (1985).
[CrossRef]

Opt. Acta (1)

J. P. Riley, F. N. Birkett, “A Reflection Kinoform for Use with a CO2 Laser,” Opt. Acta 24, 999–1009 (1977).
[CrossRef]

Opt. Eng. (1)

G. J. Swanson, W. B. Veldkamp, “Diffractive Optical Elements for Use in Infrared Systems,” Opt. Eng. 28, 605–608 (1989).
[CrossRef]

Opt. Lett. (1)

Optik (3)

R. W. Gerchberg, W. O. Saxton, “A Practical Algorithm for the Determination of Phase from Image and Diffraction Plane Pictures,” Optik 35, 237–246 (1972).

V. P. Koronkevich et al., “Fabrication of Kinoform Optical Elements,” Optik 67, 257–266 (1984).

I. A. Mikhaltsova, V. I. Navivaiko, I. S. Soldatenkov, “Kinoform Axicons,” Optik 67, 267–277 (1984).

Proc. Soc. Photo-Opt. Instrum. Eng. (2)

J. R. Leger, M. L. Scott, P. Bundman, M. P. Griswold, “Astigmatic Wavefront Correction of Gain-Guided Laser Diode Array Using Anamorphic Diffractive Microlenses,” Proc. Soc. Photo-Opt. Instrum. Eng. 884, 82–89 (1988).

K. M. Flood, J. M. Finlan, “Multiple Phase Level Computer-Generated Holograms Etched in Fused Silica,” Proc. Soc. Photo-Opt. Instrum. Eng. 1052, 91–96 (1989).

Other (3)

Perfect generation of a desired diffraction pattern (η1 = 1) generally requires both phase and amplitude modulation. This can, for example, be realized by sandwiching a kinoform and an amplitude transmission hologram. However, the drawback is that ~50% of the incident power is absorbed by the amplitude hologram, which reduces the overall efficiency.

For better characterization of the kinoform quality their diffraction patterns have to be quantified using additional measures besides diffraction efficiency, such as the standard deviation or the cross correlation of the obtained patterns relative to the intended ones.8

The spiral iteration procedure uses a partially illuminating Gaussian beam, which is allowed to move over the kinoform surface during the iteration process. The calculated kinoform phase is gradually built up by adding contributions from the kinoform areas traversed by the moving beam. The diffraction pattern quality of the resulting kinoform is insensitive to the location of the illuminating beam.8

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Manufacturing steps of quantized, blazed grating quartz kinoform.

Fig. 2
Fig. 2

Photomask exposure system.

Fig. 3
Fig. 3

Magnification of a section of two different ten-level grey scale photomasks used for fabrication of test kinoforms with pixel sizes of (a) 20 × 20 μm and (b) 10 × 10 μm. The photographs were taken with the same microscope magnification.

Fig. 4
Fig. 4

Measured process characteristics. Curve I, transmission T405 of the emulsion Agfa 8E75 HD including the glass plate) at λ = 405 nm vs exposure energy density E633 at λ = 633 nm. Curve II, transmitted energy density through the photomask vs photomask transmission at λ = 405 nm and incident energy density of 24 mJ/cm2. Curve III, photoresist relief depth dr vs exposure energy density E405 at λ = 405 nm. The photoresist was AZ1512(Hoechst) preexposed with an energy density of 11 mJ/cm2. The developer was Microposit 351, diluted 1:5. The development time was 60 s and the temperature was 21.0 ± 0.5°C.

Fig. 5
Fig. 5

(a) Ten-level blazed photoresist grating relief measured with a stylus profilometer. (b) Microscope photograph of the ten-level photomask used to produce the ten-level blazed grating shown in (a).

Fig. 6
Fig. 6

Reference diffraction intensity distribution of the test kinoform

Fig. 7
Fig. 7

Photograph of the diffraction pattern of a photoresist test kinoform type #4. The full kinoform area is illuminated.

Fig. 8
Fig. 8

Picture of the diffraction pattern of test kinoform type #5 with partial kinoform illumination.

Fig. 9
Fig. 9

Diffraction patterns from kinoforms illuminated with a Gaussian beam ~2.5-mm off-center in the direction toward one corner of the kinoform: (a) type #5 kinoform and (b) type #6, spiral iterated kinoform.

Fig. 10
Fig. 10

Diffraction pattern from a 10-μm pixel kinoform. The weak remnant of the undeflected beam is deliberately hidden within the letter O.

Fig. 11
Fig. 11

Photograph of the diffraction pattern of test kinoform type #4 fabricated in quartz. The full kinoform area is illuminated.

Tables (1)

Tables Icon

Table I Kinoform Diffraction Efficiency

Metrics