Abstract

Recently, a high collection efficiency mirror system was developed by Watson [ Cytometry 10, 681– 688 ( 1989)] to increase the sensitivity of low level fluorescence detection. The mirror system consists of an ellipsoidal imaging mirror and spherical backreflecting mirror. The fluorescing sample is located at one focus of the ellipsoid, and its image is formed at the other focus. In this paper we evaluate the image quality of this geometry using a PC-based ray tracing program. The analysis demonstrates high collection efficiency but poor image quality. The effect of poor image quality on single molecule detection is discussed.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. Skogen-Hagenson, G. C. Saltzman, P. F. Mullaney, W. H. Brockman, “A High Efficiency Flow Cytometer,” J. Histochem. Cytochem. 25, 784–789 (1977).
    [CrossRef] [PubMed]
  2. M. J. Skogen-Hagenson, “Paraboloidal Flow Cytometer for Improved Fluorescence Analysis of Single Cells,” Ph.D. Thesis, Iowa State University (1980).
  3. J. V. Watson, “A Method for Improving Light Collection by 600% from Square Cross Section Flow Cytometry Chambers,” Br J. Cancer 51, 433–435 (1985).
    [CrossRef] [PubMed]
  4. J. V. Watson, “Flow Cytometry Chamber with 4π Light Collection Suitable for Epifluorescence Microscopes,” Cytometry 10, 681–688 (1989).
    [CrossRef] [PubMed]
  5. Y. Cheng, N. J. Dovichi, “Subattomole Amino Acid Analysis by Capillary Zone Electrophoresis and Laser-Induced Fluorescence,” Science 242, 562–564 (1988).
    [CrossRef] [PubMed]
  6. N. J. Dovichi, J. C. Martin, J. H. Jett, R. A. Keller, “Attogram Detection Limit for Aqueous Dye Samples by Laser-Induced Fluorescence,” Science 219, 845–847 (1983).
    [CrossRef] [PubMed]
  7. N. J. Dovichi, J. C. Martin, J. H. Jett, M. Trkula, R. A. Keller, “Laser-Induced Fluorescence of Flowing Samples as an Approach to Single-Molecule Detection in Liquids,” Anal. Chem. 56, 348–354 (1984).
    [CrossRef] [PubMed]
  8. D. C. Nguyen, R. A. Keller, J. H. Jett, J. C. Martin, “Detection of Single Molecules of Phycoerythrin in Hydrodynamically Focused Flows by Laser-Induced Fluorescence,” Anal. Chem. 59, 2158–2161 (1987).
    [CrossRef] [PubMed]
  9. D. C. Nguyen, R. A. Keller, M. Trkula, “Ultrasensitive Laser-Induced Fluorescence Detection in Hydrodynamically Focused Flows,” J. Opt. Soc. Am. B 4, 138–143 (1987).
    [CrossRef]
  10. T. G. Matthews, F. E. Lytle, “Blank Limitations in Laser Excited Solution Luminescence,” Anal. Chem. 51, 583–585 (1979).
    [CrossRef]
  11. N. K. Seitzinger, L. M. Davis, B. S. Shera, R. A. Keller, S. A. Soper in preparation.

1989 (1)

J. V. Watson, “Flow Cytometry Chamber with 4π Light Collection Suitable for Epifluorescence Microscopes,” Cytometry 10, 681–688 (1989).
[CrossRef] [PubMed]

1988 (1)

Y. Cheng, N. J. Dovichi, “Subattomole Amino Acid Analysis by Capillary Zone Electrophoresis and Laser-Induced Fluorescence,” Science 242, 562–564 (1988).
[CrossRef] [PubMed]

1987 (2)

D. C. Nguyen, R. A. Keller, J. H. Jett, J. C. Martin, “Detection of Single Molecules of Phycoerythrin in Hydrodynamically Focused Flows by Laser-Induced Fluorescence,” Anal. Chem. 59, 2158–2161 (1987).
[CrossRef] [PubMed]

D. C. Nguyen, R. A. Keller, M. Trkula, “Ultrasensitive Laser-Induced Fluorescence Detection in Hydrodynamically Focused Flows,” J. Opt. Soc. Am. B 4, 138–143 (1987).
[CrossRef]

1985 (1)

J. V. Watson, “A Method for Improving Light Collection by 600% from Square Cross Section Flow Cytometry Chambers,” Br J. Cancer 51, 433–435 (1985).
[CrossRef] [PubMed]

1984 (1)

N. J. Dovichi, J. C. Martin, J. H. Jett, M. Trkula, R. A. Keller, “Laser-Induced Fluorescence of Flowing Samples as an Approach to Single-Molecule Detection in Liquids,” Anal. Chem. 56, 348–354 (1984).
[CrossRef] [PubMed]

1983 (1)

N. J. Dovichi, J. C. Martin, J. H. Jett, R. A. Keller, “Attogram Detection Limit for Aqueous Dye Samples by Laser-Induced Fluorescence,” Science 219, 845–847 (1983).
[CrossRef] [PubMed]

1979 (1)

T. G. Matthews, F. E. Lytle, “Blank Limitations in Laser Excited Solution Luminescence,” Anal. Chem. 51, 583–585 (1979).
[CrossRef]

1977 (1)

M. J. Skogen-Hagenson, G. C. Saltzman, P. F. Mullaney, W. H. Brockman, “A High Efficiency Flow Cytometer,” J. Histochem. Cytochem. 25, 784–789 (1977).
[CrossRef] [PubMed]

Brockman, W. H.

M. J. Skogen-Hagenson, G. C. Saltzman, P. F. Mullaney, W. H. Brockman, “A High Efficiency Flow Cytometer,” J. Histochem. Cytochem. 25, 784–789 (1977).
[CrossRef] [PubMed]

Cheng, Y.

Y. Cheng, N. J. Dovichi, “Subattomole Amino Acid Analysis by Capillary Zone Electrophoresis and Laser-Induced Fluorescence,” Science 242, 562–564 (1988).
[CrossRef] [PubMed]

Davis, L. M.

N. K. Seitzinger, L. M. Davis, B. S. Shera, R. A. Keller, S. A. Soper in preparation.

Dovichi, N. J.

Y. Cheng, N. J. Dovichi, “Subattomole Amino Acid Analysis by Capillary Zone Electrophoresis and Laser-Induced Fluorescence,” Science 242, 562–564 (1988).
[CrossRef] [PubMed]

N. J. Dovichi, J. C. Martin, J. H. Jett, M. Trkula, R. A. Keller, “Laser-Induced Fluorescence of Flowing Samples as an Approach to Single-Molecule Detection in Liquids,” Anal. Chem. 56, 348–354 (1984).
[CrossRef] [PubMed]

N. J. Dovichi, J. C. Martin, J. H. Jett, R. A. Keller, “Attogram Detection Limit for Aqueous Dye Samples by Laser-Induced Fluorescence,” Science 219, 845–847 (1983).
[CrossRef] [PubMed]

Jett, J. H.

D. C. Nguyen, R. A. Keller, J. H. Jett, J. C. Martin, “Detection of Single Molecules of Phycoerythrin in Hydrodynamically Focused Flows by Laser-Induced Fluorescence,” Anal. Chem. 59, 2158–2161 (1987).
[CrossRef] [PubMed]

N. J. Dovichi, J. C. Martin, J. H. Jett, M. Trkula, R. A. Keller, “Laser-Induced Fluorescence of Flowing Samples as an Approach to Single-Molecule Detection in Liquids,” Anal. Chem. 56, 348–354 (1984).
[CrossRef] [PubMed]

N. J. Dovichi, J. C. Martin, J. H. Jett, R. A. Keller, “Attogram Detection Limit for Aqueous Dye Samples by Laser-Induced Fluorescence,” Science 219, 845–847 (1983).
[CrossRef] [PubMed]

Keller, R. A.

D. C. Nguyen, R. A. Keller, M. Trkula, “Ultrasensitive Laser-Induced Fluorescence Detection in Hydrodynamically Focused Flows,” J. Opt. Soc. Am. B 4, 138–143 (1987).
[CrossRef]

D. C. Nguyen, R. A. Keller, J. H. Jett, J. C. Martin, “Detection of Single Molecules of Phycoerythrin in Hydrodynamically Focused Flows by Laser-Induced Fluorescence,” Anal. Chem. 59, 2158–2161 (1987).
[CrossRef] [PubMed]

N. J. Dovichi, J. C. Martin, J. H. Jett, M. Trkula, R. A. Keller, “Laser-Induced Fluorescence of Flowing Samples as an Approach to Single-Molecule Detection in Liquids,” Anal. Chem. 56, 348–354 (1984).
[CrossRef] [PubMed]

N. J. Dovichi, J. C. Martin, J. H. Jett, R. A. Keller, “Attogram Detection Limit for Aqueous Dye Samples by Laser-Induced Fluorescence,” Science 219, 845–847 (1983).
[CrossRef] [PubMed]

N. K. Seitzinger, L. M. Davis, B. S. Shera, R. A. Keller, S. A. Soper in preparation.

Lytle, F. E.

T. G. Matthews, F. E. Lytle, “Blank Limitations in Laser Excited Solution Luminescence,” Anal. Chem. 51, 583–585 (1979).
[CrossRef]

Martin, J. C.

D. C. Nguyen, R. A. Keller, J. H. Jett, J. C. Martin, “Detection of Single Molecules of Phycoerythrin in Hydrodynamically Focused Flows by Laser-Induced Fluorescence,” Anal. Chem. 59, 2158–2161 (1987).
[CrossRef] [PubMed]

N. J. Dovichi, J. C. Martin, J. H. Jett, M. Trkula, R. A. Keller, “Laser-Induced Fluorescence of Flowing Samples as an Approach to Single-Molecule Detection in Liquids,” Anal. Chem. 56, 348–354 (1984).
[CrossRef] [PubMed]

N. J. Dovichi, J. C. Martin, J. H. Jett, R. A. Keller, “Attogram Detection Limit for Aqueous Dye Samples by Laser-Induced Fluorescence,” Science 219, 845–847 (1983).
[CrossRef] [PubMed]

Matthews, T. G.

T. G. Matthews, F. E. Lytle, “Blank Limitations in Laser Excited Solution Luminescence,” Anal. Chem. 51, 583–585 (1979).
[CrossRef]

Mullaney, P. F.

M. J. Skogen-Hagenson, G. C. Saltzman, P. F. Mullaney, W. H. Brockman, “A High Efficiency Flow Cytometer,” J. Histochem. Cytochem. 25, 784–789 (1977).
[CrossRef] [PubMed]

Nguyen, D. C.

D. C. Nguyen, R. A. Keller, J. H. Jett, J. C. Martin, “Detection of Single Molecules of Phycoerythrin in Hydrodynamically Focused Flows by Laser-Induced Fluorescence,” Anal. Chem. 59, 2158–2161 (1987).
[CrossRef] [PubMed]

D. C. Nguyen, R. A. Keller, M. Trkula, “Ultrasensitive Laser-Induced Fluorescence Detection in Hydrodynamically Focused Flows,” J. Opt. Soc. Am. B 4, 138–143 (1987).
[CrossRef]

Saltzman, G. C.

M. J. Skogen-Hagenson, G. C. Saltzman, P. F. Mullaney, W. H. Brockman, “A High Efficiency Flow Cytometer,” J. Histochem. Cytochem. 25, 784–789 (1977).
[CrossRef] [PubMed]

Seitzinger, N. K.

N. K. Seitzinger, L. M. Davis, B. S. Shera, R. A. Keller, S. A. Soper in preparation.

Shera, B. S.

N. K. Seitzinger, L. M. Davis, B. S. Shera, R. A. Keller, S. A. Soper in preparation.

Skogen-Hagenson, M. J.

M. J. Skogen-Hagenson, G. C. Saltzman, P. F. Mullaney, W. H. Brockman, “A High Efficiency Flow Cytometer,” J. Histochem. Cytochem. 25, 784–789 (1977).
[CrossRef] [PubMed]

M. J. Skogen-Hagenson, “Paraboloidal Flow Cytometer for Improved Fluorescence Analysis of Single Cells,” Ph.D. Thesis, Iowa State University (1980).

Soper, S. A.

N. K. Seitzinger, L. M. Davis, B. S. Shera, R. A. Keller, S. A. Soper in preparation.

Trkula, M.

D. C. Nguyen, R. A. Keller, M. Trkula, “Ultrasensitive Laser-Induced Fluorescence Detection in Hydrodynamically Focused Flows,” J. Opt. Soc. Am. B 4, 138–143 (1987).
[CrossRef]

N. J. Dovichi, J. C. Martin, J. H. Jett, M. Trkula, R. A. Keller, “Laser-Induced Fluorescence of Flowing Samples as an Approach to Single-Molecule Detection in Liquids,” Anal. Chem. 56, 348–354 (1984).
[CrossRef] [PubMed]

Watson, J. V.

J. V. Watson, “Flow Cytometry Chamber with 4π Light Collection Suitable for Epifluorescence Microscopes,” Cytometry 10, 681–688 (1989).
[CrossRef] [PubMed]

J. V. Watson, “A Method for Improving Light Collection by 600% from Square Cross Section Flow Cytometry Chambers,” Br J. Cancer 51, 433–435 (1985).
[CrossRef] [PubMed]

Anal. Chem. (3)

N. J. Dovichi, J. C. Martin, J. H. Jett, M. Trkula, R. A. Keller, “Laser-Induced Fluorescence of Flowing Samples as an Approach to Single-Molecule Detection in Liquids,” Anal. Chem. 56, 348–354 (1984).
[CrossRef] [PubMed]

D. C. Nguyen, R. A. Keller, J. H. Jett, J. C. Martin, “Detection of Single Molecules of Phycoerythrin in Hydrodynamically Focused Flows by Laser-Induced Fluorescence,” Anal. Chem. 59, 2158–2161 (1987).
[CrossRef] [PubMed]

T. G. Matthews, F. E. Lytle, “Blank Limitations in Laser Excited Solution Luminescence,” Anal. Chem. 51, 583–585 (1979).
[CrossRef]

Br J. Cancer (1)

J. V. Watson, “A Method for Improving Light Collection by 600% from Square Cross Section Flow Cytometry Chambers,” Br J. Cancer 51, 433–435 (1985).
[CrossRef] [PubMed]

Cytometry (1)

J. V. Watson, “Flow Cytometry Chamber with 4π Light Collection Suitable for Epifluorescence Microscopes,” Cytometry 10, 681–688 (1989).
[CrossRef] [PubMed]

J. Histochem. Cytochem. (1)

M. J. Skogen-Hagenson, G. C. Saltzman, P. F. Mullaney, W. H. Brockman, “A High Efficiency Flow Cytometer,” J. Histochem. Cytochem. 25, 784–789 (1977).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

Science (2)

Y. Cheng, N. J. Dovichi, “Subattomole Amino Acid Analysis by Capillary Zone Electrophoresis and Laser-Induced Fluorescence,” Science 242, 562–564 (1988).
[CrossRef] [PubMed]

N. J. Dovichi, J. C. Martin, J. H. Jett, R. A. Keller, “Attogram Detection Limit for Aqueous Dye Samples by Laser-Induced Fluorescence,” Science 219, 845–847 (1983).
[CrossRef] [PubMed]

Other (2)

N. K. Seitzinger, L. M. Davis, B. S. Shera, R. A. Keller, S. A. Soper in preparation.

M. J. Skogen-Hagenson, “Paraboloidal Flow Cytometer for Improved Fluorescence Analysis of Single Cells,” Ph.D. Thesis, Iowa State University (1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a) Diagram of the first configuration or ideal case mirror geometry showing several rays originating at the primary focus O and imaging on the secondary focus O located on the surface of the sphere. The scale size is indicated for the x- and z-axis. (b) Diagram of the second configuration mirror geometry showing the flow channel centered on the primary focus O. Also shown are the paths of several rays originating from the primary focus. These rays are imaged on the spherical surface near the secondary focus O. The outlined area shows the region in which rays can propagate when critical angle effects between the flow channel and body of the reflector are considered.

Fig. 2
Fig. 2

The rms blur size as a function of the position of a point source located along the x- and z-axes is shown in this figure. The primary focus is located at zero. Configuration one is shown by curves a and b for the x- and z-axes, respectively. The remaining curves are for configuration two. This configuration was analyzed in two parts. Curves c and d are for light rays originating on the z- and x-axes, respectively, and striking the spherical mirror first. Finally curves e and f are light rays originating on the x- and z-axes, respectively, and striking the ellipsoidal mirror first.

Metrics