Abstract

A new laser scanning microscope system has been developed to observe the spatial distribution of light scattering particles or defects in a partially transparent object. The present microscope has an optical probe whose intensity is modulated by the interference effect between two crossed laser beams with slightly different frequencies. In this paper, a Zeeman laser combined with a simple polarizing optical system is used to produce two such coherent beams. Experimental results obtained by using a latex sphere and a microscale as the target show qualitatively that high image contrast is obtained by the present method even if some obscuring particles exist in front of the probe volume. Distributions of light scattering particles or defects in a LiNbO3 and TGS single crystal can be visualized by a computer-controlled scan stage.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription