Abstract

A method of measuring the thermal diffusivity of solid material at room temperature with photothermal radiometry is described. By measuring the amplitude and phase frequency characteristics of the photothermal signal, the thermal diffusivity is calculated and compared with the value obtained by the pulsed laser conductometer method.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. D. Cowan, J. Appl. Phys. 32, 1363 (1961).
    [CrossRef]
  2. R. L. Rudkin, R. J. Jenkins, W. J. Parker, Rev. Sci. Instrum. 33, 21 (1962).
    [CrossRef]
  3. H. W. Deem, W. D. Wood, Rev. Sci. Instrum. 33, 1107 (1962).
    [CrossRef]
  4. D. A. Watt, Br. J. Appl. Phys. 17, 231 (1966).
    [CrossRef]
  5. Guan Guoxin, Zheng Xiaoming, Li Peizan, Chin. J. Infrared Res. 3, 201–205 (1988).

1988 (1)

Guan Guoxin, Zheng Xiaoming, Li Peizan, Chin. J. Infrared Res. 3, 201–205 (1988).

1966 (1)

D. A. Watt, Br. J. Appl. Phys. 17, 231 (1966).
[CrossRef]

1962 (2)

R. L. Rudkin, R. J. Jenkins, W. J. Parker, Rev. Sci. Instrum. 33, 21 (1962).
[CrossRef]

H. W. Deem, W. D. Wood, Rev. Sci. Instrum. 33, 1107 (1962).
[CrossRef]

1961 (1)

R. D. Cowan, J. Appl. Phys. 32, 1363 (1961).
[CrossRef]

Cowan, R. D.

R. D. Cowan, J. Appl. Phys. 32, 1363 (1961).
[CrossRef]

Deem, H. W.

H. W. Deem, W. D. Wood, Rev. Sci. Instrum. 33, 1107 (1962).
[CrossRef]

Guoxin, Guan

Guan Guoxin, Zheng Xiaoming, Li Peizan, Chin. J. Infrared Res. 3, 201–205 (1988).

Jenkins, R. J.

R. L. Rudkin, R. J. Jenkins, W. J. Parker, Rev. Sci. Instrum. 33, 21 (1962).
[CrossRef]

Parker, W. J.

R. L. Rudkin, R. J. Jenkins, W. J. Parker, Rev. Sci. Instrum. 33, 21 (1962).
[CrossRef]

Peizan, Li

Guan Guoxin, Zheng Xiaoming, Li Peizan, Chin. J. Infrared Res. 3, 201–205 (1988).

Rudkin, R. L.

R. L. Rudkin, R. J. Jenkins, W. J. Parker, Rev. Sci. Instrum. 33, 21 (1962).
[CrossRef]

Watt, D. A.

D. A. Watt, Br. J. Appl. Phys. 17, 231 (1966).
[CrossRef]

Wood, W. D.

H. W. Deem, W. D. Wood, Rev. Sci. Instrum. 33, 1107 (1962).
[CrossRef]

Xiaoming, Zheng

Guan Guoxin, Zheng Xiaoming, Li Peizan, Chin. J. Infrared Res. 3, 201–205 (1988).

Br. J. Appl. Phys. (1)

D. A. Watt, Br. J. Appl. Phys. 17, 231 (1966).
[CrossRef]

Chin. J. Infrared Res. (1)

Guan Guoxin, Zheng Xiaoming, Li Peizan, Chin. J. Infrared Res. 3, 201–205 (1988).

J. Appl. Phys. (1)

R. D. Cowan, J. Appl. Phys. 32, 1363 (1961).
[CrossRef]

Rev. Sci. Instrum. (2)

R. L. Rudkin, R. J. Jenkins, W. J. Parker, Rev. Sci. Instrum. 33, 21 (1962).
[CrossRef]

H. W. Deem, W. D. Wood, Rev. Sci. Instrum. 33, 1107 (1962).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Photothermal radiometry scheme.

Fig. 2
Fig. 2

(a) Amplitude frequency characteristic and (b) phase frequency characteristic. The solid line is from the complete theory; the dotted line is from the simplified theory.

Fig. 3
Fig. 3

Experimental setup.

Fig. 4
Fig. 4

(a) Amplitude frequency characteristic for 1G8N19Ti steel steel. The and (b) phase frequency characteristic for 1G8N19Ti si simplified theory; ;he pluses solid line is the fitting curve from represent the experimental data.

Fig. 5
Fig. 5

Amplitude frequency characteristic for graphite. The solid line is the fitting curve from simplified theory; the pluses represent the experimental data.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

δ w = 4 ɛ σ T 0 3 δ T ( W cm - 2 ) ,
2 T r 2 + 1 r T r + 2 T z 2 = 1 α T t - 1 - β K β I ( r ) exp ( - β z ) [ 1 + exp ( j ω t ) ] ,
k T z ( r , o , t ) = - β I ( r ) [ 1 + exp ( j ω t ) ] + h 1 T ( r , o , t ) , k T z ( r , l , t ) = β ( 1 - β ) I ( r ) exp ( - β l ) [ 1 + exp ( j ω t ) ] - h 1 T ( r , l , t ) ,
k T r ( R , z , t ) = - h 2 T ( R , z , t ) .
δ T ( r , l , t ) = n 2 f n k σ n [ exp ( σ n 1 ) - exp ( - σ n 1 ) ] J 0 ( k n r ) exp ( j ω t ) ,
f n = { a 2 R 2 I 0 [ 1 - exp ( - a 2 / R 2 ) ] n = 0 , I 0 J 0 2 ( k n R ) a 2 R 2 exp ( - k n 2 a 2 4 ) n 0.
A ( l ) f - 1 / 2 { exp [ 2 l ( π f α ) 1 / 2 ] + exp [ - 2 l ( π f α ) 1 / 2 ] - 2 cos [ 2 l ( π f α ) 1 / 2 ] } - 1 / 2 ,
ϕ ( l ) = tan - 1 exp [ l ( π f α ) 1 / 2 ] + exp [ - l ( π f α ) 1 / 2 ] exp [ l ( π f α ) 1 / 2 ] - exp [ - l ( π f α ) 1 / 2 ] tan [ l ( π f α ) 1 / 2 ] - π 4 .

Metrics