Abstract

An analytical model that incorporates effects of light scattering was developed for dual-beam photothermal deflection spectroscopy. Thermal gradients induced by a modulated excitation beam deflect an optical probe beam which was treated as being of finite dimensions. Mechanisms by which thermal gradients produce refractive index gradients are discussed, with an explicit expression for dn/dT being derived. Experimental studies with suspensions of small latex particles in Nd3+ solutions demonstrated that the model accurately predicts both the shape of the deflection signal and the attenuation of the signal due to light scattering. The absolute magnitude of the observed signal is approximately predicted by theory.

© 1990 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photothermal deflection spectroscopy and detection

W. B. Jackson, N. M. Amer, A. C. Boccara, and D. Fournier
Appl. Opt. 20(8) 1333-1344 (1981)

Optical ray tracing for crossed beam photothermal deflection spectroscopy

Jeffrey A. Sell
Appl. Opt. 26(2) 336-342 (1987)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (15)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription