Abstract

Designed for atmospheric pollution monitoring, a breadboard model of a new Michelson interferometer has been developed. It utilizes a nutating retroreflector to generate alterations in the geometrical and optical paths. The forward–backward stop–and–go movement of a reflecting element of conventional Michelson interferometers is thus replaced by a continuous rotation. At this state the instrument employs a 6.3-cm(2.5-in.) diam rotating retroreflector, a ZnSe beam splitter, and a HgCdTe detector at liquid nitrogen temperature, sensitive in the 8–14-μm band. It allows spectral resolutions of up to 2 cm−1. The device is linked via an analog digital interface to a desktop computer which performs interferometer control, data acquisition, Fourier transform, and display of the spectra.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. A. Vanasse, Ed., Spectrometric Techniques, Vol. 1 (Academic, New York, 1977).
  2. B. Carli, M. Carlotti, F. Mencaraglia, E. Rossi, “Far-Infrared High-Resolution Fourier Transform Spectrometer,” Appl. Opt. 26, 3818–3822 (1987).
    [Crossref] [PubMed]
  3. P. Burkert, Zweistrahl-Interferometer zur Fourierspektroskopie, European Patent Application0034325 (10Feb.1981).
  4. G. A. Vanasse, Ed., Spectrometric Techniques, Vol. 2 (Academic, New York, 1981).
  5. J. Rohlin, “An Interferometer for Precision Angle Measurements,” Appl. Opt. 2, 762–763 (1963).
    [Crossref]
  6. M. V. R. K. Murty, Modification of the Michelson Interferometer Using only One Cube-Corner Prism,” J. Opt. Soc. Am. 50, 83–84 (1960).
    [Crossref]
  7. V. Tank, “Method and Arrangement of an Interferometer,” U.S. Patent4,652,130 (24Mar.1987).
  8. V. Tank, “Interferometer,” European Patent0146768 (1Feb.1989).
  9. O. Mayer, Aufbau eines Infrarot-Michelson interferometers mit einem rotierenden Retroreflektor, Diplomarbeit, Lehrstuhl fur Elektrische Meβtechnik, Technische U. Munchen (6June1989).
  10. W. F. Herget, “Remote and Cross-Stack Measurement of Stack Gas Concentrations Using a Mobile FT-IR System,” Appl. Opt. 21, 635–641 (1982).
    [Crossref] [PubMed]

1987 (1)

1982 (1)

1963 (1)

1960 (1)

M. V. R. K. Murty, Modification of the Michelson Interferometer Using only One Cube-Corner Prism,” J. Opt. Soc. Am. 50, 83–84 (1960).
[Crossref]

Burkert, P.

P. Burkert, Zweistrahl-Interferometer zur Fourierspektroskopie, European Patent Application0034325 (10Feb.1981).

Carli, B.

Carlotti, M.

Herget, W. F.

Mayer, O.

O. Mayer, Aufbau eines Infrarot-Michelson interferometers mit einem rotierenden Retroreflektor, Diplomarbeit, Lehrstuhl fur Elektrische Meβtechnik, Technische U. Munchen (6June1989).

Mencaraglia, F.

Murty, M. V. R. K.

M. V. R. K. Murty, Modification of the Michelson Interferometer Using only One Cube-Corner Prism,” J. Opt. Soc. Am. 50, 83–84 (1960).
[Crossref]

Rohlin, J.

Rossi, E.

Tank, V.

V. Tank, “Method and Arrangement of an Interferometer,” U.S. Patent4,652,130 (24Mar.1987).

V. Tank, “Interferometer,” European Patent0146768 (1Feb.1989).

Appl. Opt. (3)

J. Opt. Soc. Am. (1)

M. V. R. K. Murty, Modification of the Michelson Interferometer Using only One Cube-Corner Prism,” J. Opt. Soc. Am. 50, 83–84 (1960).
[Crossref]

Other (6)

V. Tank, “Method and Arrangement of an Interferometer,” U.S. Patent4,652,130 (24Mar.1987).

V. Tank, “Interferometer,” European Patent0146768 (1Feb.1989).

O. Mayer, Aufbau eines Infrarot-Michelson interferometers mit einem rotierenden Retroreflektor, Diplomarbeit, Lehrstuhl fur Elektrische Meβtechnik, Technische U. Munchen (6June1989).

G. A. Vanasse, Ed., Spectrometric Techniques, Vol. 1 (Academic, New York, 1977).

P. Burkert, Zweistrahl-Interferometer zur Fourierspektroskopie, European Patent Application0034325 (10Feb.1981).

G. A. Vanasse, Ed., Spectrometric Techniques, Vol. 2 (Academic, New York, 1981).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Interferometer with rotating retroreflector.

Fig. 2
Fig. 2

Ray tracing through the retroreflector.

Fig. 3
Fig. 3

Optical path difference Smax as a function of displacement l and angle α and maximum beam diameters; the dotted line shows a combination for maximum energy throughput.

Fig. 4
Fig. 4

Laboratory model. The rays of the He–Ne laser enhanced.

Fig. 5
Fig. 5

Interferogram of the grey body radiator (segment); asymmetry is due to the nonperfect rectangular mirror.

Fig. 6
Fig. 6

Spectrum of the greybody radiator; first quantitative result.

Fig. 7
Fig. 7

Electronic circuitry block diagram including interferometer, data and reference signal paths, data conversion, and personal computer.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

s 1 = P e - P E ;
s 2 = P 1 - P e + P 2 - P 1 + P 3 - P 2 + P a - P 3 ;
s 3 = P A - P a .
s 1 = a + sin α ( cos ω t - 1 ) ( l + r sin α + L cos α ) x 2 + y 2 + z 2 x sin α cos α ( cos ω t - 1 ) + y sin α sin ω t + z ( sin 2 α ( cos ω t - 1 ) + 1 ) ;
s 2 = 4 d x 2 + y 2 + z 2 3 ( x sin α cos α ( cos ω t - 1 ) + y sin α sin ω t + z ( sin 2 α ( cos ω t - 1 ) + 1 ) ) ;
s 3 = 2 3 L x + 4 d ( x sin α cos α ( cos ω t - 1 ) + y sin α sin ω t + z ( sin 2 α ( cos ω t - 1 ) + 1 ) ) 3 x 2 + y 2 + z 2 - 2 3 ( l + r sin α ) ( ( x cos α + z sin α ) ( cos ω t - 1 ) + y sin ω t ) 3 x 2 + y 2 + z 2 - x 2 + y 2 + z 2 ( 4 d + 3 sin α ( l + r sin α + L cos α ) ( cos ω t - 1 ) ] 3 ( x sin α cos α ( cos ω t - 1 ) + y sin α sin ω t + z ( sin 2 α ( cos ω t - 1 ) + 1 ) ) + a .
S ( ω t ) = 2 [ s 1 ( ω t ) + s 2 ( ω t ) + s 3 ( ω t ) ] ,
S ( ω t ) = 2 [ 2 a + 2 3 L x + 4 d z - 2 sin α ( x cos α + z sin α ) ] 3 x 2 + y 2 + z 2 + 2 [ 4 d sin α - 2 3 ( l + r sin α ) ] ( x 2 + z 2 ) sin 2 ( α + ρ ) + y 2 sin ( ω t + φ ) 3 x 2 + y 2 + z 2 ,
tan φ = x 2 + z 2 sin ( α + ρ ) y .
S max = S ( 0 ) - S ( π ) = 8 [ l - ( r - 2 3 d ) sin α ] sin ( α + ρ ) .

Metrics