Abstract

Linearly polarized laser light is scattered from an oscillating, acoustically levitated bubble, and the scattered intensity is measured with a suitable photodetector. The output photodetector current is converted into a voltage and digitized. For spherical bubbles, the scattered intensity Irel(R,θ,t) as a function of radius R and angle θ is calculated theoretically by solving the boundary value problem (Mie theory) for the water–bubble interface. The inverse transfer function R(I) is obtained by integrating over the photodetector solid angle centered at some constant θ. Using R(I) as a look-up table, the radius vs time [R(t)] response is calculated from the measured intensity vs time [Iexp(R,t)].

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Euler, “Classe de Philosophie experimentale,” Histoire de l’ Academie Royale des Sciences et Belles Lettres, Mem. R. 10, 1754 (Berlin, 1756). pp 227–295; the remarks on the rupture of the liquid from the walls are made in Chap. 81, pp. 266–267.
  2. Lord Rayleigh, “On the Pressure Developed in a Liquid During the Collapse of a Spherical Cavity,” Philos. Mag. 34, 94 (1917).
    [Crossref]
  3. D-Y Hsieh, “Some Analytical Aspects of Bubble Dynamics,” J. Basic Eng. 87D, 991 (1965).
    [Crossref]
  4. M. S. Plesset, “The Dynamics of Cavitation Bubbles,” J. Appl. Mech. 16, 277 (1949).
  5. B. E. Noltingk, E. A. Neppiras, “Cavitation Produced by Ultrasonics,” Proc. Phys. Soc. London, Sect. B 63, 674 (1950).
    [Crossref]
  6. B. E. Noltingk, E. A. Neppiras, “Cavitation Produced by Ultrasonics: Theoretical Conditions for Onset of Cavitation,” Proc. Phys. Soc. London, Sect. B 64, 1032 (1951).
    [Crossref]
  7. H. Poritsky, “The Collapse of Growth of a Spherical Bubble or Cavity in a Viscous Liquid,” in Proceedings, First U.S. National Congress on Applied Mechanics (ASME, New York, 1952), p. 813.
  8. R. Hickling, M. S. Plesset, “Collapse and Rebound of a Spherical Bubble in Water,” Phys. Fluids 7, 7 (1964).
    [Crossref]
  9. A. Prosperetti, L. A. Crum, K. W. Commander, “Nonlinear Bubble Dynamics,” J. Acoust. Soc. Am. 83, 502 (1988).
    [Crossref]
  10. S. A. Thorpe, P. N. Humphries, “Bubbles and Breaking Waves,” Nature (London) 283, 463 (1980).
    [Crossref]
  11. A. Prosperetti, “Bubble Dynamics in Oceanic Ambient Noise” in Sea Surface Sound, B. R. Kerman, ed., 151 (Kluwer, Dordrecht, 1988).
    [Crossref]
  12. L. A. Crum, S. Daniels, M. Dyson, G. R. ter Haar, A. J. Walton, “Acoustic Cavitation and Medical Ultrasound,” Proc. Inst. Acoust. (U.K.) 8, 137 (1986).
  13. R. E. Apfel, “Acoustic Cavitation: A Possible Consequence of Biomedical Uses of Ultrasound,” Br. J. Cancer Suppl. V 45, 140 (1982).
  14. G. Mie, “Beiträge für optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys. (Leipzig) 25, 377 (1908).
  15. M. S. Plesset, “On the Stability of Fluid Flows with Spherical Symmetry,” J. Appl. Phys. 25, 96 (1954).
    [Crossref]
  16. A. Prosperetti, “Viscous Effects on Perturbed Spherical Flows,” Q. Appl. Math. 35, 339 (1977).
  17. A. Prosperetti, G. Seminara, “Linear Stability of a Growing or Collapsing Bubble in a Slightly Viscous Liquid,” Phys. Fluids 21, 1465 (1978).
    [Crossref]
  18. H. G. Flynn, “Physics of Acoustic Cavitation in Liquids,” in Physical Acoustics, W. P. Mason, Ed. (Academic, New York, 1964).
  19. R. E. Apfel, “Acoustic Cavitation Prediction,” J. Acoust. Soc. Am. 69, 1624 (1981).
    [Crossref]
  20. W. Lauterborn, “Numerical Investigation of Nonlinear Oscillations of Gas Bubbles in Liquids,” J. Acoust. Soc. Am. 59, 283 (1976).
    [Crossref]
  21. Y. A. Akulichev, “Pulsations of Cavitation Bubbles in the Field of an Ultrasonic Wave,” Sov. Phys. Acoust. 13, 149 (1967).
  22. J. B. Keller, I. Kolodner, “Damping at Underwater Explosion Bubble Oscillations,” J. Appl. Phys. 27, 1152 (1956).
    [Crossref]
  23. A. Prosperetti, “Nonlinear Oscillations of Gas Bubbles in Liquids: Steady-State Solutions,” J. Acoust. Soc. Am. 56, 878 (1974).
    [Crossref]
  24. J. B. Keller, M. Miksis, “Bubble Oscillations of Large Amplitude,” J. Acoust. Soc. Am. 68, 628 (1980).
    [Crossref]
  25. A. Prosperetii, “Thermal Effects and Damping Mechanisms in the Forced Radial Oscillations of Gas Bubbles in Liquids,” J. Acoust. Soc. Am. 61, 17 (1977).
    [Crossref]
  26. L. A. Crum, “The Polytropic Exponent of Gas Contained Within Air Bubbles Pulsating in a Liquid,” J. Acoust. Soc. Am. 73, 116 (1983).
    [Crossref]
  27. L. A. Crum, A. Prosperetii, “Nonnlinear Oscillations of Gas Bubbles in Liquids: an Interpretation of Some Experimental Results,” J. Acoust. Soc. Am. 73, 121 (1983).
    [Crossref]
  28. H. G. Flynn, “Cavitation Dynamics. I. A Mathematical Formulation,” J. Acoust. Soc. Am. 57, 1379 (1975).
    [Crossref]
  29. R. Hickling, “Effects of Thermal Conduction in Sonoluminescence,” J. Acoust. Soc. Am. 35, 967 (1963).
    [Crossref]
  30. J. M. T. Thompson, H. B. Stewart, Nonlinear Dynamics and Chaos (Wiley, New York, 1986).
  31. W. Lauterborn, “Cavitation Bubble Dynamics—New Tools for an Intricate Problem,” Appl. Sci. Res. 38, 165 (1982).
    [Crossref]
  32. W. Lauterborn, E. Cramer, “Subharmonic Route to Chaos Observed in Acoustics,” Phys. Rev. Lett. 47, 1445 (1984).
    [Crossref]
  33. W. Lauterborn, E. Suchla, “Bifurcation Superstructure in a Model of Acoustic Turbulence,” Phys. Rev. Lett. 53, 2304 (1984).
    [Crossref]
  34. D. F. Gaitan, NCPA University, M5 38677; private communication.
  35. V. Kamath, A. Prosperetti, “Numerical Integration Methods in Gas-Bubble Dynamics,” J. Acoust. Soc. Am. 85, 1538 (1989).
    [Crossref]
  36. L. A. Crum, J. B. Fowlkes, “Acoustic Cavitation Generated by Microsecond Pulses of Ultrasound,” Nature (London) 319, 52 (1986).
    [Crossref]
  37. A. Eller, H. G. Flynn, “Rectified Diffusion During Nonlinear Pulsations of Cavitation Bubbles,” J. Acoust. Soc. Am. 37, 493 (1965).
    [Crossref]
  38. C. C. Church, “Prediction of Rectified Diffusion During Nonlinear Bubble Pulsations at Biomedical Frequencies,” J. Acoust. Soc. Am. 83, 2210 (1988).
    [Crossref] [PubMed]
  39. W. Lauterborn, “Kavitation durch Laserlicht,” Acustica 31, 51 (1974).
  40. W. Lauterborn, K. J. Ebeling, “High Speed Holography of Laser-Induced Breakdown in Liquids,” Appl. Phys. Lett. 31, 663 (1977).
    [Crossref]
  41. G. Haussmann, W. Lauterborn, “Determination of Size and Position of Fast Moving Gas Bubbles in Liquids by Digital 3–D Image Processing of Hologram Reconstructions,” Appl. Opt. 19, 3529 (1980).
    [Crossref] [PubMed]
  42. W. Lauterborn, A. Vogel, “Modern Optical Techniques in Fluid Mechanics,” Ann. Rev. Fluid Mech. 16, 223 (1984).
    [Crossref]
  43. W. Hentschel, W. Lauterborn, “High Speed Holographic Movie Camera,” Opt. Eng. 24, 687 (1985).
  44. W. Hentschel, H. Zarschizky, W. Lauterborn, “Recording and Automatical Analysis of Pulsed Off-Axis Holograms for Determination of Cavitation Nuclei Size Spectra,” Opt. Commun. 53, 69 (1985).
    [Crossref]
  45. W. Lauterborn, A. Koch, “Holographic Observation of Period Doubled and Chaotic Bubble Oscillations in Acoustic Cavitation,” Phys. Rev. A 35, 1974 (1987).
    [Crossref] [PubMed]
  46. A. Vogel, W. Lauterborn, “Time-Resolved Particle Image Velocimetry Used in the Investigation of Cavitation Bubble Dynamics,” Appl. Opt. 27, 1869 (1988).
    [Crossref] [PubMed]
  47. W. Lauterborn, J. Holzfuss, A. Koch, “Recent Advances in Cavitation Research at Göttingen University,” in Proceedings, 1986 International Symposium on Cavitation, H. Murai, Ed. (Sendai, Japan, 1986).
  48. G. M. Hansen, “Mie Scattering as a Technique for the Sizing of Air Bubbles,” Appl. Opt. 24, 3214 (1985).
    [Crossref] [PubMed]
  49. P. L. Marston, “Critical Angle Scattering by a Bubble: Physical-Optics Approximation and Observations,” J. Opt. Soc. Am. 69, 1205 (1979).
    [Crossref]
  50. D. S. Langley, P. L. Marston, “Critical-Angle Scattering of Laser Light from Bubbles in Water: Measurements, Models, and Application to Sizing of Bubbles,” Appl. Opt. 23, 1044 (1984).
    [Crossref] [PubMed]
  51. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).
  52. G. M. Hansen, “Mie Scattering as a Technique for the Sizing of Air Bubbles,” Ph.D. Dissertation, U. Mississippi, Oxford (1983).
  53. W. J. Wiscombe, “Improved Mie Scattering Algorithms,” Appl. Opt. 19, 1505 (1980).
    [Crossref] [PubMed]
  54. D. L. Kingsbury, P. L. Marston, “Mie Scattering Near the Critical Angle of Bubbles in Water,” J. Opt. Soc. Am. 71, 358 (1981).
    [Crossref]
  55. P. L. Marston suggested that the detector be placed at or near the critical angle for scattering by an air bubble in water (82.9°). In P. L. Marston, D. L. Kingsbury, “Scattering by a Bubble in Water Near the Critical Angle: Interference Effects,” J. Opt. Soc. Am. 71, 192–196 (1981), it is explained that it is necessary to be at or near the critical angle so that contributions from rays transmitted through the bubble adjacent to the point of specular reflection do not affect the nearly R2 dependence.
    [Crossref]
  56. R. G. Holt, “Experimental Observation of the Nonlinear Response of Single Bubbles to an Applied Acoustic Field,” Ph.D. Dissertation, U. Mississippi, Oxford (1988).
  57. M. Strasberg, “Onset of Ultrasonic Cavitation in Tap Water,” J. Acoust. Soc. Am. 31, 163 (1959).
    [Crossref]
  58. R. G. Holt, “Nonlinear Dynamics of Single Cavitation Bubbles,” in Proceedings, Thirteenth International Congress on Acoustics, Vol. 1, p. 131 (Dragan Srnic Press, Sabac, Yugoslavia, 1989); Belgrade, Yugoslavia.
  59. H. W. Wyld, Mathematical Methods for Physics (Addison-Wesley, Reading, MA, 1976).
  60. S. D. Horsburgh, NCPA, University, M5 38677; proprietary unpublished software package.
  61. J. H. Moore, C. C. Davis, M. A. Coplan, Building Scientific Apparatus (Addison-Wesley, Reading, MA, 1983).
  62. L. A. Crum, “Measurements of the Growth of Air Bubbles by Rectified Diffusion,” J. Acoust. Soc. Am. 68, 203 (1980).
    [Crossref]
  63. A. I. Eller, “Damping Constants of Pulsating Bubbles,” J. Acoust. Soc. Am. 47, 1469 (1970).
    [Crossref]
  64. L. A. Crum, A. Prosperetti, “Erratum and Comments on ‘Nonlinear Oscillations of Gas Bubbles in Liquids: an Interpretation of Some Experimental Results’, J. Acoust. Soc. Am. 75, 1910 (1984).
    [Crossref]
  65. The essential experimental technique used here, i.e., correlating fluctuations of scattered light intensity from a levitated fluid spheroid to monitor the mechanical oscillations of that object, appears to have been anticipated by an earlier experiment performed by Marston [P. L. Marston, “Rainbow Phenomena and the Detection of Nonsphericity in Drops,” Appl. Opt. 19, 680–685 (1980)] in the investigation of forced shape oscillations of liquid drops. The author was unaware of these results at the time the present experiments were performed.
    [Crossref] [PubMed]
  66. This is an acceptable criterion primarily because of the large angle subtended by the detector. If fine structure details had been important, it would have been necessary to fulfill a far more stringent criterion analogous to the far field scattering condition discussed in Refs. 49, 54, and 55.

1989 (1)

V. Kamath, A. Prosperetti, “Numerical Integration Methods in Gas-Bubble Dynamics,” J. Acoust. Soc. Am. 85, 1538 (1989).
[Crossref]

1988 (3)

C. C. Church, “Prediction of Rectified Diffusion During Nonlinear Bubble Pulsations at Biomedical Frequencies,” J. Acoust. Soc. Am. 83, 2210 (1988).
[Crossref] [PubMed]

A. Prosperetti, L. A. Crum, K. W. Commander, “Nonlinear Bubble Dynamics,” J. Acoust. Soc. Am. 83, 502 (1988).
[Crossref]

A. Vogel, W. Lauterborn, “Time-Resolved Particle Image Velocimetry Used in the Investigation of Cavitation Bubble Dynamics,” Appl. Opt. 27, 1869 (1988).
[Crossref] [PubMed]

1987 (1)

W. Lauterborn, A. Koch, “Holographic Observation of Period Doubled and Chaotic Bubble Oscillations in Acoustic Cavitation,” Phys. Rev. A 35, 1974 (1987).
[Crossref] [PubMed]

1986 (2)

L. A. Crum, S. Daniels, M. Dyson, G. R. ter Haar, A. J. Walton, “Acoustic Cavitation and Medical Ultrasound,” Proc. Inst. Acoust. (U.K.) 8, 137 (1986).

L. A. Crum, J. B. Fowlkes, “Acoustic Cavitation Generated by Microsecond Pulses of Ultrasound,” Nature (London) 319, 52 (1986).
[Crossref]

1985 (3)

G. M. Hansen, “Mie Scattering as a Technique for the Sizing of Air Bubbles,” Appl. Opt. 24, 3214 (1985).
[Crossref] [PubMed]

W. Hentschel, W. Lauterborn, “High Speed Holographic Movie Camera,” Opt. Eng. 24, 687 (1985).

W. Hentschel, H. Zarschizky, W. Lauterborn, “Recording and Automatical Analysis of Pulsed Off-Axis Holograms for Determination of Cavitation Nuclei Size Spectra,” Opt. Commun. 53, 69 (1985).
[Crossref]

1984 (5)

W. Lauterborn, A. Vogel, “Modern Optical Techniques in Fluid Mechanics,” Ann. Rev. Fluid Mech. 16, 223 (1984).
[Crossref]

D. S. Langley, P. L. Marston, “Critical-Angle Scattering of Laser Light from Bubbles in Water: Measurements, Models, and Application to Sizing of Bubbles,” Appl. Opt. 23, 1044 (1984).
[Crossref] [PubMed]

L. A. Crum, A. Prosperetti, “Erratum and Comments on ‘Nonlinear Oscillations of Gas Bubbles in Liquids: an Interpretation of Some Experimental Results’, J. Acoust. Soc. Am. 75, 1910 (1984).
[Crossref]

W. Lauterborn, E. Cramer, “Subharmonic Route to Chaos Observed in Acoustics,” Phys. Rev. Lett. 47, 1445 (1984).
[Crossref]

W. Lauterborn, E. Suchla, “Bifurcation Superstructure in a Model of Acoustic Turbulence,” Phys. Rev. Lett. 53, 2304 (1984).
[Crossref]

1983 (2)

L. A. Crum, “The Polytropic Exponent of Gas Contained Within Air Bubbles Pulsating in a Liquid,” J. Acoust. Soc. Am. 73, 116 (1983).
[Crossref]

L. A. Crum, A. Prosperetii, “Nonnlinear Oscillations of Gas Bubbles in Liquids: an Interpretation of Some Experimental Results,” J. Acoust. Soc. Am. 73, 121 (1983).
[Crossref]

1982 (2)

W. Lauterborn, “Cavitation Bubble Dynamics—New Tools for an Intricate Problem,” Appl. Sci. Res. 38, 165 (1982).
[Crossref]

R. E. Apfel, “Acoustic Cavitation: A Possible Consequence of Biomedical Uses of Ultrasound,” Br. J. Cancer Suppl. V 45, 140 (1982).

1981 (3)

1980 (6)

1979 (1)

1978 (1)

A. Prosperetti, G. Seminara, “Linear Stability of a Growing or Collapsing Bubble in a Slightly Viscous Liquid,” Phys. Fluids 21, 1465 (1978).
[Crossref]

1977 (3)

A. Prosperetii, “Thermal Effects and Damping Mechanisms in the Forced Radial Oscillations of Gas Bubbles in Liquids,” J. Acoust. Soc. Am. 61, 17 (1977).
[Crossref]

W. Lauterborn, K. J. Ebeling, “High Speed Holography of Laser-Induced Breakdown in Liquids,” Appl. Phys. Lett. 31, 663 (1977).
[Crossref]

A. Prosperetti, “Viscous Effects on Perturbed Spherical Flows,” Q. Appl. Math. 35, 339 (1977).

1976 (1)

W. Lauterborn, “Numerical Investigation of Nonlinear Oscillations of Gas Bubbles in Liquids,” J. Acoust. Soc. Am. 59, 283 (1976).
[Crossref]

1975 (1)

H. G. Flynn, “Cavitation Dynamics. I. A Mathematical Formulation,” J. Acoust. Soc. Am. 57, 1379 (1975).
[Crossref]

1974 (2)

A. Prosperetti, “Nonlinear Oscillations of Gas Bubbles in Liquids: Steady-State Solutions,” J. Acoust. Soc. Am. 56, 878 (1974).
[Crossref]

W. Lauterborn, “Kavitation durch Laserlicht,” Acustica 31, 51 (1974).

1970 (1)

A. I. Eller, “Damping Constants of Pulsating Bubbles,” J. Acoust. Soc. Am. 47, 1469 (1970).
[Crossref]

1967 (1)

Y. A. Akulichev, “Pulsations of Cavitation Bubbles in the Field of an Ultrasonic Wave,” Sov. Phys. Acoust. 13, 149 (1967).

1965 (2)

D-Y Hsieh, “Some Analytical Aspects of Bubble Dynamics,” J. Basic Eng. 87D, 991 (1965).
[Crossref]

A. Eller, H. G. Flynn, “Rectified Diffusion During Nonlinear Pulsations of Cavitation Bubbles,” J. Acoust. Soc. Am. 37, 493 (1965).
[Crossref]

1964 (1)

R. Hickling, M. S. Plesset, “Collapse and Rebound of a Spherical Bubble in Water,” Phys. Fluids 7, 7 (1964).
[Crossref]

1963 (1)

R. Hickling, “Effects of Thermal Conduction in Sonoluminescence,” J. Acoust. Soc. Am. 35, 967 (1963).
[Crossref]

1959 (1)

M. Strasberg, “Onset of Ultrasonic Cavitation in Tap Water,” J. Acoust. Soc. Am. 31, 163 (1959).
[Crossref]

1956 (1)

J. B. Keller, I. Kolodner, “Damping at Underwater Explosion Bubble Oscillations,” J. Appl. Phys. 27, 1152 (1956).
[Crossref]

1954 (1)

M. S. Plesset, “On the Stability of Fluid Flows with Spherical Symmetry,” J. Appl. Phys. 25, 96 (1954).
[Crossref]

1951 (1)

B. E. Noltingk, E. A. Neppiras, “Cavitation Produced by Ultrasonics: Theoretical Conditions for Onset of Cavitation,” Proc. Phys. Soc. London, Sect. B 64, 1032 (1951).
[Crossref]

1950 (1)

B. E. Noltingk, E. A. Neppiras, “Cavitation Produced by Ultrasonics,” Proc. Phys. Soc. London, Sect. B 63, 674 (1950).
[Crossref]

1949 (1)

M. S. Plesset, “The Dynamics of Cavitation Bubbles,” J. Appl. Mech. 16, 277 (1949).

1917 (1)

Lord Rayleigh, “On the Pressure Developed in a Liquid During the Collapse of a Spherical Cavity,” Philos. Mag. 34, 94 (1917).
[Crossref]

1908 (1)

G. Mie, “Beiträge für optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys. (Leipzig) 25, 377 (1908).

Akulichev, Y. A.

Y. A. Akulichev, “Pulsations of Cavitation Bubbles in the Field of an Ultrasonic Wave,” Sov. Phys. Acoust. 13, 149 (1967).

Apfel, R. E.

R. E. Apfel, “Acoustic Cavitation: A Possible Consequence of Biomedical Uses of Ultrasound,” Br. J. Cancer Suppl. V 45, 140 (1982).

R. E. Apfel, “Acoustic Cavitation Prediction,” J. Acoust. Soc. Am. 69, 1624 (1981).
[Crossref]

Church, C. C.

C. C. Church, “Prediction of Rectified Diffusion During Nonlinear Bubble Pulsations at Biomedical Frequencies,” J. Acoust. Soc. Am. 83, 2210 (1988).
[Crossref] [PubMed]

Commander, K. W.

A. Prosperetti, L. A. Crum, K. W. Commander, “Nonlinear Bubble Dynamics,” J. Acoust. Soc. Am. 83, 502 (1988).
[Crossref]

Coplan, M. A.

J. H. Moore, C. C. Davis, M. A. Coplan, Building Scientific Apparatus (Addison-Wesley, Reading, MA, 1983).

Cramer, E.

W. Lauterborn, E. Cramer, “Subharmonic Route to Chaos Observed in Acoustics,” Phys. Rev. Lett. 47, 1445 (1984).
[Crossref]

Crum, L. A.

A. Prosperetti, L. A. Crum, K. W. Commander, “Nonlinear Bubble Dynamics,” J. Acoust. Soc. Am. 83, 502 (1988).
[Crossref]

L. A. Crum, S. Daniels, M. Dyson, G. R. ter Haar, A. J. Walton, “Acoustic Cavitation and Medical Ultrasound,” Proc. Inst. Acoust. (U.K.) 8, 137 (1986).

L. A. Crum, J. B. Fowlkes, “Acoustic Cavitation Generated by Microsecond Pulses of Ultrasound,” Nature (London) 319, 52 (1986).
[Crossref]

L. A. Crum, A. Prosperetti, “Erratum and Comments on ‘Nonlinear Oscillations of Gas Bubbles in Liquids: an Interpretation of Some Experimental Results’, J. Acoust. Soc. Am. 75, 1910 (1984).
[Crossref]

L. A. Crum, “The Polytropic Exponent of Gas Contained Within Air Bubbles Pulsating in a Liquid,” J. Acoust. Soc. Am. 73, 116 (1983).
[Crossref]

L. A. Crum, A. Prosperetii, “Nonnlinear Oscillations of Gas Bubbles in Liquids: an Interpretation of Some Experimental Results,” J. Acoust. Soc. Am. 73, 121 (1983).
[Crossref]

L. A. Crum, “Measurements of the Growth of Air Bubbles by Rectified Diffusion,” J. Acoust. Soc. Am. 68, 203 (1980).
[Crossref]

Daniels, S.

L. A. Crum, S. Daniels, M. Dyson, G. R. ter Haar, A. J. Walton, “Acoustic Cavitation and Medical Ultrasound,” Proc. Inst. Acoust. (U.K.) 8, 137 (1986).

Davis, C. C.

J. H. Moore, C. C. Davis, M. A. Coplan, Building Scientific Apparatus (Addison-Wesley, Reading, MA, 1983).

Dyson, M.

L. A. Crum, S. Daniels, M. Dyson, G. R. ter Haar, A. J. Walton, “Acoustic Cavitation and Medical Ultrasound,” Proc. Inst. Acoust. (U.K.) 8, 137 (1986).

Ebeling, K. J.

W. Lauterborn, K. J. Ebeling, “High Speed Holography of Laser-Induced Breakdown in Liquids,” Appl. Phys. Lett. 31, 663 (1977).
[Crossref]

Eller, A.

A. Eller, H. G. Flynn, “Rectified Diffusion During Nonlinear Pulsations of Cavitation Bubbles,” J. Acoust. Soc. Am. 37, 493 (1965).
[Crossref]

Eller, A. I.

A. I. Eller, “Damping Constants of Pulsating Bubbles,” J. Acoust. Soc. Am. 47, 1469 (1970).
[Crossref]

Euler, L.

L. Euler, “Classe de Philosophie experimentale,” Histoire de l’ Academie Royale des Sciences et Belles Lettres, Mem. R. 10, 1754 (Berlin, 1756). pp 227–295; the remarks on the rupture of the liquid from the walls are made in Chap. 81, pp. 266–267.

Flynn, H. G.

H. G. Flynn, “Cavitation Dynamics. I. A Mathematical Formulation,” J. Acoust. Soc. Am. 57, 1379 (1975).
[Crossref]

A. Eller, H. G. Flynn, “Rectified Diffusion During Nonlinear Pulsations of Cavitation Bubbles,” J. Acoust. Soc. Am. 37, 493 (1965).
[Crossref]

H. G. Flynn, “Physics of Acoustic Cavitation in Liquids,” in Physical Acoustics, W. P. Mason, Ed. (Academic, New York, 1964).

Fowlkes, J. B.

L. A. Crum, J. B. Fowlkes, “Acoustic Cavitation Generated by Microsecond Pulses of Ultrasound,” Nature (London) 319, 52 (1986).
[Crossref]

Gaitan, D. F.

D. F. Gaitan, NCPA University, M5 38677; private communication.

Hansen, G. M.

G. M. Hansen, “Mie Scattering as a Technique for the Sizing of Air Bubbles,” Appl. Opt. 24, 3214 (1985).
[Crossref] [PubMed]

G. M. Hansen, “Mie Scattering as a Technique for the Sizing of Air Bubbles,” Ph.D. Dissertation, U. Mississippi, Oxford (1983).

Haussmann, G.

Hentschel, W.

W. Hentschel, W. Lauterborn, “High Speed Holographic Movie Camera,” Opt. Eng. 24, 687 (1985).

W. Hentschel, H. Zarschizky, W. Lauterborn, “Recording and Automatical Analysis of Pulsed Off-Axis Holograms for Determination of Cavitation Nuclei Size Spectra,” Opt. Commun. 53, 69 (1985).
[Crossref]

Hickling, R.

R. Hickling, M. S. Plesset, “Collapse and Rebound of a Spherical Bubble in Water,” Phys. Fluids 7, 7 (1964).
[Crossref]

R. Hickling, “Effects of Thermal Conduction in Sonoluminescence,” J. Acoust. Soc. Am. 35, 967 (1963).
[Crossref]

Holt, R. G.

R. G. Holt, “Experimental Observation of the Nonlinear Response of Single Bubbles to an Applied Acoustic Field,” Ph.D. Dissertation, U. Mississippi, Oxford (1988).

R. G. Holt, “Nonlinear Dynamics of Single Cavitation Bubbles,” in Proceedings, Thirteenth International Congress on Acoustics, Vol. 1, p. 131 (Dragan Srnic Press, Sabac, Yugoslavia, 1989); Belgrade, Yugoslavia.

Holzfuss, J.

W. Lauterborn, J. Holzfuss, A. Koch, “Recent Advances in Cavitation Research at Göttingen University,” in Proceedings, 1986 International Symposium on Cavitation, H. Murai, Ed. (Sendai, Japan, 1986).

Horsburgh, S. D.

S. D. Horsburgh, NCPA, University, M5 38677; proprietary unpublished software package.

Hsieh, D-Y

D-Y Hsieh, “Some Analytical Aspects of Bubble Dynamics,” J. Basic Eng. 87D, 991 (1965).
[Crossref]

Humphries, P. N.

S. A. Thorpe, P. N. Humphries, “Bubbles and Breaking Waves,” Nature (London) 283, 463 (1980).
[Crossref]

Kamath, V.

V. Kamath, A. Prosperetti, “Numerical Integration Methods in Gas-Bubble Dynamics,” J. Acoust. Soc. Am. 85, 1538 (1989).
[Crossref]

Keller, J. B.

J. B. Keller, M. Miksis, “Bubble Oscillations of Large Amplitude,” J. Acoust. Soc. Am. 68, 628 (1980).
[Crossref]

J. B. Keller, I. Kolodner, “Damping at Underwater Explosion Bubble Oscillations,” J. Appl. Phys. 27, 1152 (1956).
[Crossref]

Kerker, M.

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).

Kingsbury, D. L.

Koch, A.

W. Lauterborn, A. Koch, “Holographic Observation of Period Doubled and Chaotic Bubble Oscillations in Acoustic Cavitation,” Phys. Rev. A 35, 1974 (1987).
[Crossref] [PubMed]

W. Lauterborn, J. Holzfuss, A. Koch, “Recent Advances in Cavitation Research at Göttingen University,” in Proceedings, 1986 International Symposium on Cavitation, H. Murai, Ed. (Sendai, Japan, 1986).

Kolodner, I.

J. B. Keller, I. Kolodner, “Damping at Underwater Explosion Bubble Oscillations,” J. Appl. Phys. 27, 1152 (1956).
[Crossref]

Langley, D. S.

Lauterborn, W.

A. Vogel, W. Lauterborn, “Time-Resolved Particle Image Velocimetry Used in the Investigation of Cavitation Bubble Dynamics,” Appl. Opt. 27, 1869 (1988).
[Crossref] [PubMed]

W. Lauterborn, A. Koch, “Holographic Observation of Period Doubled and Chaotic Bubble Oscillations in Acoustic Cavitation,” Phys. Rev. A 35, 1974 (1987).
[Crossref] [PubMed]

W. Hentschel, H. Zarschizky, W. Lauterborn, “Recording and Automatical Analysis of Pulsed Off-Axis Holograms for Determination of Cavitation Nuclei Size Spectra,” Opt. Commun. 53, 69 (1985).
[Crossref]

W. Hentschel, W. Lauterborn, “High Speed Holographic Movie Camera,” Opt. Eng. 24, 687 (1985).

W. Lauterborn, A. Vogel, “Modern Optical Techniques in Fluid Mechanics,” Ann. Rev. Fluid Mech. 16, 223 (1984).
[Crossref]

W. Lauterborn, E. Suchla, “Bifurcation Superstructure in a Model of Acoustic Turbulence,” Phys. Rev. Lett. 53, 2304 (1984).
[Crossref]

W. Lauterborn, E. Cramer, “Subharmonic Route to Chaos Observed in Acoustics,” Phys. Rev. Lett. 47, 1445 (1984).
[Crossref]

W. Lauterborn, “Cavitation Bubble Dynamics—New Tools for an Intricate Problem,” Appl. Sci. Res. 38, 165 (1982).
[Crossref]

G. Haussmann, W. Lauterborn, “Determination of Size and Position of Fast Moving Gas Bubbles in Liquids by Digital 3–D Image Processing of Hologram Reconstructions,” Appl. Opt. 19, 3529 (1980).
[Crossref] [PubMed]

W. Lauterborn, K. J. Ebeling, “High Speed Holography of Laser-Induced Breakdown in Liquids,” Appl. Phys. Lett. 31, 663 (1977).
[Crossref]

W. Lauterborn, “Numerical Investigation of Nonlinear Oscillations of Gas Bubbles in Liquids,” J. Acoust. Soc. Am. 59, 283 (1976).
[Crossref]

W. Lauterborn, “Kavitation durch Laserlicht,” Acustica 31, 51 (1974).

W. Lauterborn, J. Holzfuss, A. Koch, “Recent Advances in Cavitation Research at Göttingen University,” in Proceedings, 1986 International Symposium on Cavitation, H. Murai, Ed. (Sendai, Japan, 1986).

Marston, P. L.

D. S. Langley, P. L. Marston, “Critical-Angle Scattering of Laser Light from Bubbles in Water: Measurements, Models, and Application to Sizing of Bubbles,” Appl. Opt. 23, 1044 (1984).
[Crossref] [PubMed]

D. L. Kingsbury, P. L. Marston, “Mie Scattering Near the Critical Angle of Bubbles in Water,” J. Opt. Soc. Am. 71, 358 (1981).
[Crossref]

P. L. Marston suggested that the detector be placed at or near the critical angle for scattering by an air bubble in water (82.9°). In P. L. Marston, D. L. Kingsbury, “Scattering by a Bubble in Water Near the Critical Angle: Interference Effects,” J. Opt. Soc. Am. 71, 192–196 (1981), it is explained that it is necessary to be at or near the critical angle so that contributions from rays transmitted through the bubble adjacent to the point of specular reflection do not affect the nearly R2 dependence.
[Crossref]

The essential experimental technique used here, i.e., correlating fluctuations of scattered light intensity from a levitated fluid spheroid to monitor the mechanical oscillations of that object, appears to have been anticipated by an earlier experiment performed by Marston [P. L. Marston, “Rainbow Phenomena and the Detection of Nonsphericity in Drops,” Appl. Opt. 19, 680–685 (1980)] in the investigation of forced shape oscillations of liquid drops. The author was unaware of these results at the time the present experiments were performed.
[Crossref] [PubMed]

P. L. Marston, “Critical Angle Scattering by a Bubble: Physical-Optics Approximation and Observations,” J. Opt. Soc. Am. 69, 1205 (1979).
[Crossref]

Mie, G.

G. Mie, “Beiträge für optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys. (Leipzig) 25, 377 (1908).

Miksis, M.

J. B. Keller, M. Miksis, “Bubble Oscillations of Large Amplitude,” J. Acoust. Soc. Am. 68, 628 (1980).
[Crossref]

Moore, J. H.

J. H. Moore, C. C. Davis, M. A. Coplan, Building Scientific Apparatus (Addison-Wesley, Reading, MA, 1983).

Neppiras, E. A.

B. E. Noltingk, E. A. Neppiras, “Cavitation Produced by Ultrasonics: Theoretical Conditions for Onset of Cavitation,” Proc. Phys. Soc. London, Sect. B 64, 1032 (1951).
[Crossref]

B. E. Noltingk, E. A. Neppiras, “Cavitation Produced by Ultrasonics,” Proc. Phys. Soc. London, Sect. B 63, 674 (1950).
[Crossref]

Noltingk, B. E.

B. E. Noltingk, E. A. Neppiras, “Cavitation Produced by Ultrasonics: Theoretical Conditions for Onset of Cavitation,” Proc. Phys. Soc. London, Sect. B 64, 1032 (1951).
[Crossref]

B. E. Noltingk, E. A. Neppiras, “Cavitation Produced by Ultrasonics,” Proc. Phys. Soc. London, Sect. B 63, 674 (1950).
[Crossref]

Plesset, M. S.

R. Hickling, M. S. Plesset, “Collapse and Rebound of a Spherical Bubble in Water,” Phys. Fluids 7, 7 (1964).
[Crossref]

M. S. Plesset, “On the Stability of Fluid Flows with Spherical Symmetry,” J. Appl. Phys. 25, 96 (1954).
[Crossref]

M. S. Plesset, “The Dynamics of Cavitation Bubbles,” J. Appl. Mech. 16, 277 (1949).

Poritsky, H.

H. Poritsky, “The Collapse of Growth of a Spherical Bubble or Cavity in a Viscous Liquid,” in Proceedings, First U.S. National Congress on Applied Mechanics (ASME, New York, 1952), p. 813.

Prosperetii, A.

L. A. Crum, A. Prosperetii, “Nonnlinear Oscillations of Gas Bubbles in Liquids: an Interpretation of Some Experimental Results,” J. Acoust. Soc. Am. 73, 121 (1983).
[Crossref]

A. Prosperetii, “Thermal Effects and Damping Mechanisms in the Forced Radial Oscillations of Gas Bubbles in Liquids,” J. Acoust. Soc. Am. 61, 17 (1977).
[Crossref]

Prosperetti, A.

V. Kamath, A. Prosperetti, “Numerical Integration Methods in Gas-Bubble Dynamics,” J. Acoust. Soc. Am. 85, 1538 (1989).
[Crossref]

A. Prosperetti, L. A. Crum, K. W. Commander, “Nonlinear Bubble Dynamics,” J. Acoust. Soc. Am. 83, 502 (1988).
[Crossref]

L. A. Crum, A. Prosperetti, “Erratum and Comments on ‘Nonlinear Oscillations of Gas Bubbles in Liquids: an Interpretation of Some Experimental Results’, J. Acoust. Soc. Am. 75, 1910 (1984).
[Crossref]

A. Prosperetti, G. Seminara, “Linear Stability of a Growing or Collapsing Bubble in a Slightly Viscous Liquid,” Phys. Fluids 21, 1465 (1978).
[Crossref]

A. Prosperetti, “Viscous Effects on Perturbed Spherical Flows,” Q. Appl. Math. 35, 339 (1977).

A. Prosperetti, “Nonlinear Oscillations of Gas Bubbles in Liquids: Steady-State Solutions,” J. Acoust. Soc. Am. 56, 878 (1974).
[Crossref]

A. Prosperetti, “Bubble Dynamics in Oceanic Ambient Noise” in Sea Surface Sound, B. R. Kerman, ed., 151 (Kluwer, Dordrecht, 1988).
[Crossref]

Rayleigh, Lord

Lord Rayleigh, “On the Pressure Developed in a Liquid During the Collapse of a Spherical Cavity,” Philos. Mag. 34, 94 (1917).
[Crossref]

Seminara, G.

A. Prosperetti, G. Seminara, “Linear Stability of a Growing or Collapsing Bubble in a Slightly Viscous Liquid,” Phys. Fluids 21, 1465 (1978).
[Crossref]

Stewart, H. B.

J. M. T. Thompson, H. B. Stewart, Nonlinear Dynamics and Chaos (Wiley, New York, 1986).

Strasberg, M.

M. Strasberg, “Onset of Ultrasonic Cavitation in Tap Water,” J. Acoust. Soc. Am. 31, 163 (1959).
[Crossref]

Suchla, E.

W. Lauterborn, E. Suchla, “Bifurcation Superstructure in a Model of Acoustic Turbulence,” Phys. Rev. Lett. 53, 2304 (1984).
[Crossref]

ter Haar, G. R.

L. A. Crum, S. Daniels, M. Dyson, G. R. ter Haar, A. J. Walton, “Acoustic Cavitation and Medical Ultrasound,” Proc. Inst. Acoust. (U.K.) 8, 137 (1986).

Thompson, J. M. T.

J. M. T. Thompson, H. B. Stewart, Nonlinear Dynamics and Chaos (Wiley, New York, 1986).

Thorpe, S. A.

S. A. Thorpe, P. N. Humphries, “Bubbles and Breaking Waves,” Nature (London) 283, 463 (1980).
[Crossref]

Vogel, A.

Walton, A. J.

L. A. Crum, S. Daniels, M. Dyson, G. R. ter Haar, A. J. Walton, “Acoustic Cavitation and Medical Ultrasound,” Proc. Inst. Acoust. (U.K.) 8, 137 (1986).

Wiscombe, W. J.

Wyld, H. W.

H. W. Wyld, Mathematical Methods for Physics (Addison-Wesley, Reading, MA, 1976).

Zarschizky, H.

W. Hentschel, H. Zarschizky, W. Lauterborn, “Recording and Automatical Analysis of Pulsed Off-Axis Holograms for Determination of Cavitation Nuclei Size Spectra,” Opt. Commun. 53, 69 (1985).
[Crossref]

Acustica (1)

W. Lauterborn, “Kavitation durch Laserlicht,” Acustica 31, 51 (1974).

Ann. Phys. (Leipzig) (1)

G. Mie, “Beiträge für optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys. (Leipzig) 25, 377 (1908).

Ann. Rev. Fluid Mech. (1)

W. Lauterborn, A. Vogel, “Modern Optical Techniques in Fluid Mechanics,” Ann. Rev. Fluid Mech. 16, 223 (1984).
[Crossref]

Appl. Opt. (6)

Appl. Phys. Lett. (1)

W. Lauterborn, K. J. Ebeling, “High Speed Holography of Laser-Induced Breakdown in Liquids,” Appl. Phys. Lett. 31, 663 (1977).
[Crossref]

Appl. Sci. Res. (1)

W. Lauterborn, “Cavitation Bubble Dynamics—New Tools for an Intricate Problem,” Appl. Sci. Res. 38, 165 (1982).
[Crossref]

Br. J. Cancer Suppl. V (1)

R. E. Apfel, “Acoustic Cavitation: A Possible Consequence of Biomedical Uses of Ultrasound,” Br. J. Cancer Suppl. V 45, 140 (1982).

J. Acoust. Soc. Am. (17)

A. Prosperetti, L. A. Crum, K. W. Commander, “Nonlinear Bubble Dynamics,” J. Acoust. Soc. Am. 83, 502 (1988).
[Crossref]

R. E. Apfel, “Acoustic Cavitation Prediction,” J. Acoust. Soc. Am. 69, 1624 (1981).
[Crossref]

W. Lauterborn, “Numerical Investigation of Nonlinear Oscillations of Gas Bubbles in Liquids,” J. Acoust. Soc. Am. 59, 283 (1976).
[Crossref]

V. Kamath, A. Prosperetti, “Numerical Integration Methods in Gas-Bubble Dynamics,” J. Acoust. Soc. Am. 85, 1538 (1989).
[Crossref]

A. Prosperetti, “Nonlinear Oscillations of Gas Bubbles in Liquids: Steady-State Solutions,” J. Acoust. Soc. Am. 56, 878 (1974).
[Crossref]

J. B. Keller, M. Miksis, “Bubble Oscillations of Large Amplitude,” J. Acoust. Soc. Am. 68, 628 (1980).
[Crossref]

A. Prosperetii, “Thermal Effects and Damping Mechanisms in the Forced Radial Oscillations of Gas Bubbles in Liquids,” J. Acoust. Soc. Am. 61, 17 (1977).
[Crossref]

L. A. Crum, “The Polytropic Exponent of Gas Contained Within Air Bubbles Pulsating in a Liquid,” J. Acoust. Soc. Am. 73, 116 (1983).
[Crossref]

L. A. Crum, A. Prosperetii, “Nonnlinear Oscillations of Gas Bubbles in Liquids: an Interpretation of Some Experimental Results,” J. Acoust. Soc. Am. 73, 121 (1983).
[Crossref]

H. G. Flynn, “Cavitation Dynamics. I. A Mathematical Formulation,” J. Acoust. Soc. Am. 57, 1379 (1975).
[Crossref]

R. Hickling, “Effects of Thermal Conduction in Sonoluminescence,” J. Acoust. Soc. Am. 35, 967 (1963).
[Crossref]

A. Eller, H. G. Flynn, “Rectified Diffusion During Nonlinear Pulsations of Cavitation Bubbles,” J. Acoust. Soc. Am. 37, 493 (1965).
[Crossref]

C. C. Church, “Prediction of Rectified Diffusion During Nonlinear Bubble Pulsations at Biomedical Frequencies,” J. Acoust. Soc. Am. 83, 2210 (1988).
[Crossref] [PubMed]

L. A. Crum, “Measurements of the Growth of Air Bubbles by Rectified Diffusion,” J. Acoust. Soc. Am. 68, 203 (1980).
[Crossref]

A. I. Eller, “Damping Constants of Pulsating Bubbles,” J. Acoust. Soc. Am. 47, 1469 (1970).
[Crossref]

L. A. Crum, A. Prosperetti, “Erratum and Comments on ‘Nonlinear Oscillations of Gas Bubbles in Liquids: an Interpretation of Some Experimental Results’, J. Acoust. Soc. Am. 75, 1910 (1984).
[Crossref]

M. Strasberg, “Onset of Ultrasonic Cavitation in Tap Water,” J. Acoust. Soc. Am. 31, 163 (1959).
[Crossref]

J. Appl. Mech. (1)

M. S. Plesset, “The Dynamics of Cavitation Bubbles,” J. Appl. Mech. 16, 277 (1949).

J. Appl. Phys. (2)

M. S. Plesset, “On the Stability of Fluid Flows with Spherical Symmetry,” J. Appl. Phys. 25, 96 (1954).
[Crossref]

J. B. Keller, I. Kolodner, “Damping at Underwater Explosion Bubble Oscillations,” J. Appl. Phys. 27, 1152 (1956).
[Crossref]

J. Basic Eng. (1)

D-Y Hsieh, “Some Analytical Aspects of Bubble Dynamics,” J. Basic Eng. 87D, 991 (1965).
[Crossref]

J. Opt. Soc. Am. (3)

Nature (London) (2)

S. A. Thorpe, P. N. Humphries, “Bubbles and Breaking Waves,” Nature (London) 283, 463 (1980).
[Crossref]

L. A. Crum, J. B. Fowlkes, “Acoustic Cavitation Generated by Microsecond Pulses of Ultrasound,” Nature (London) 319, 52 (1986).
[Crossref]

Opt. Commun. (1)

W. Hentschel, H. Zarschizky, W. Lauterborn, “Recording and Automatical Analysis of Pulsed Off-Axis Holograms for Determination of Cavitation Nuclei Size Spectra,” Opt. Commun. 53, 69 (1985).
[Crossref]

Opt. Eng. (1)

W. Hentschel, W. Lauterborn, “High Speed Holographic Movie Camera,” Opt. Eng. 24, 687 (1985).

Philos. Mag. (1)

Lord Rayleigh, “On the Pressure Developed in a Liquid During the Collapse of a Spherical Cavity,” Philos. Mag. 34, 94 (1917).
[Crossref]

Phys. Fluids (2)

R. Hickling, M. S. Plesset, “Collapse and Rebound of a Spherical Bubble in Water,” Phys. Fluids 7, 7 (1964).
[Crossref]

A. Prosperetti, G. Seminara, “Linear Stability of a Growing or Collapsing Bubble in a Slightly Viscous Liquid,” Phys. Fluids 21, 1465 (1978).
[Crossref]

Phys. Rev. A (1)

W. Lauterborn, A. Koch, “Holographic Observation of Period Doubled and Chaotic Bubble Oscillations in Acoustic Cavitation,” Phys. Rev. A 35, 1974 (1987).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

W. Lauterborn, E. Cramer, “Subharmonic Route to Chaos Observed in Acoustics,” Phys. Rev. Lett. 47, 1445 (1984).
[Crossref]

W. Lauterborn, E. Suchla, “Bifurcation Superstructure in a Model of Acoustic Turbulence,” Phys. Rev. Lett. 53, 2304 (1984).
[Crossref]

Proc. Inst. Acoust. (U.K.) (1)

L. A. Crum, S. Daniels, M. Dyson, G. R. ter Haar, A. J. Walton, “Acoustic Cavitation and Medical Ultrasound,” Proc. Inst. Acoust. (U.K.) 8, 137 (1986).

Proc. Phys. Soc. London, Sect. B (2)

B. E. Noltingk, E. A. Neppiras, “Cavitation Produced by Ultrasonics,” Proc. Phys. Soc. London, Sect. B 63, 674 (1950).
[Crossref]

B. E. Noltingk, E. A. Neppiras, “Cavitation Produced by Ultrasonics: Theoretical Conditions for Onset of Cavitation,” Proc. Phys. Soc. London, Sect. B 64, 1032 (1951).
[Crossref]

Q. Appl. Math. (1)

A. Prosperetti, “Viscous Effects on Perturbed Spherical Flows,” Q. Appl. Math. 35, 339 (1977).

Sov. Phys. Acoust. (1)

Y. A. Akulichev, “Pulsations of Cavitation Bubbles in the Field of an Ultrasonic Wave,” Sov. Phys. Acoust. 13, 149 (1967).

Other (15)

D. F. Gaitan, NCPA University, M5 38677; private communication.

J. M. T. Thompson, H. B. Stewart, Nonlinear Dynamics and Chaos (Wiley, New York, 1986).

H. G. Flynn, “Physics of Acoustic Cavitation in Liquids,” in Physical Acoustics, W. P. Mason, Ed. (Academic, New York, 1964).

A. Prosperetti, “Bubble Dynamics in Oceanic Ambient Noise” in Sea Surface Sound, B. R. Kerman, ed., 151 (Kluwer, Dordrecht, 1988).
[Crossref]

H. Poritsky, “The Collapse of Growth of a Spherical Bubble or Cavity in a Viscous Liquid,” in Proceedings, First U.S. National Congress on Applied Mechanics (ASME, New York, 1952), p. 813.

L. Euler, “Classe de Philosophie experimentale,” Histoire de l’ Academie Royale des Sciences et Belles Lettres, Mem. R. 10, 1754 (Berlin, 1756). pp 227–295; the remarks on the rupture of the liquid from the walls are made in Chap. 81, pp. 266–267.

W. Lauterborn, J. Holzfuss, A. Koch, “Recent Advances in Cavitation Research at Göttingen University,” in Proceedings, 1986 International Symposium on Cavitation, H. Murai, Ed. (Sendai, Japan, 1986).

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).

G. M. Hansen, “Mie Scattering as a Technique for the Sizing of Air Bubbles,” Ph.D. Dissertation, U. Mississippi, Oxford (1983).

R. G. Holt, “Experimental Observation of the Nonlinear Response of Single Bubbles to an Applied Acoustic Field,” Ph.D. Dissertation, U. Mississippi, Oxford (1988).

R. G. Holt, “Nonlinear Dynamics of Single Cavitation Bubbles,” in Proceedings, Thirteenth International Congress on Acoustics, Vol. 1, p. 131 (Dragan Srnic Press, Sabac, Yugoslavia, 1989); Belgrade, Yugoslavia.

H. W. Wyld, Mathematical Methods for Physics (Addison-Wesley, Reading, MA, 1976).

S. D. Horsburgh, NCPA, University, M5 38677; proprietary unpublished software package.

J. H. Moore, C. C. Davis, M. A. Coplan, Building Scientific Apparatus (Addison-Wesley, Reading, MA, 1983).

This is an acceptable criterion primarily because of the large angle subtended by the detector. If fine structure details had been important, it would have been necessary to fulfill a far more stringent criterion analogous to the far field scattering condition discussed in Refs. 49, 54, and 55.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Theoretical resonance curves for P = 0.03,0.04, …, 0.24 atm obtained by numerically integrating Eqs. (2), (4), and (5) with fd = 24.4 kHz.

Fig. 2
Fig. 2

Theoretical scattered intensity as a function of scattering angle (0 is forward) for a size parameter of 661. This corresponds to a radius of 38.6 μm with respect to the argon-ion 488.0-nm line. Only the parallel polarized component S2 is shown.

Fig. 3
Fig. 3

Theoretical scattered intensity as a function of the radius of the spherical scatterer (bubble). The wavelength in the bubble is 488.0 nm, and the scattering angle is 80° from the forward. S2 is plotted corresponding to polarization of the incident beam parallel to the scattering plane.

Fig. 4
Fig. 4

Generalized schematic of the experimental apparatus. Shading indicates a variable component of the system.

Fig. 5
Fig. 5

Results of integrating the theoretical scattered intensity over the solid angle subtended by the photodiode, for which the spread in the scattering angle was ±4.81°. The wavelength in the bubble was 488.0 nm, and the center angle was 80°.

Fig. 6
Fig. 6

Data (symbols) and theory (solid line) for the photodiode with solid angle of ±4.81° centered at 80°. Wavelength in the bubble is 488.0 nm. The radii were obtained by a rise time technique.

Fig. 7
Fig. 7

Data (open diamonds, open squares, and filled squares) and theory (solid lines) for, in respective ascending order, driving pressures of 0.14, 0.20, and 0.24 atm with fd = 24.4 kHz.

Fig. 8
Fig. 8

Nonlinear harmonic oscillation of a bubble of equilibrium radius 64.2 μm. (a) Driving pressure vs time, fd = 24.2 kHz. (b) Voltage output of the photodiode vs time. (c) Experimental and theoretical bubble radius vs time.

Fig. 9
Fig. 9

Response of a bubble undergoing shape oscillations. The bubble equilibrium radius is ~90 μm, the driving pressure is ~0.2 atm, and the driving frequency fd is 24.4 kHz. (a) Voltage output of the photodiode and (b) Power spectrum.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

p = p 0 ( R 0 R ) 3 κ ,
( 1 - R ˙ c ) R R ¨ + 3 2 R ˙ 2 ( 1 - R 3 c ) = ( 1 + R ˙ c ) 1 ρ L [ p B ( t ) - p s ( t + R c ) - p ] + R ρ L c d p B ( t ) d t ,
p ( t ) = p B ( R , t ) + 2 σ R + 4 μ L R ˙ R ,
p = [ 3 R ( γ - 1 ) K T r | R - γ p R ˙ ] ,
τ T + γ - 1 γ p R 2 ( τ y - τ y | y = 1 y ) τ y - D p ˙ = D R 2 2 τ ,
τ = T T K ( θ ) d θ ,
D ( p , T ) = K ( T ) C p ρ ( p , T ) = γ - 1 γ K ( T ) T p .
I θ = λ 2 4 π 2 r 2 S 2 2 cos 2 ϕ ,
I θ = λ 2 4 π 2 r 2 S 1 2 sin 2 ϕ ,
I rel = 4 π 2 r 2 I θ λ 2 = S 2 2 cos 2 θ .
Φ exp i = V exp i ( R 0 ) I rel ( R = R 0 ) d θ d ϕ ,
Φ = i N Φ exp i N .

Metrics