Abstract

Linearly polarized laser light is scattered from an oscillating, acoustically levitated bubble, and the scattered intensity is measured with a suitable photodetector. The output photodetector current is converted into a voltage and digitized. For spherical bubbles, the scattered intensity Irel(R,θ,t) as a function of radius R and angle θ is calculated theoretically by solving the boundary value problem (Mie theory) for the water–bubble interface. The inverse transfer function R(I) is obtained by integrating over the photodetector solid angle centered at some constant θ. Using R(I) as a look-up table, the radius vs time [R(t)] response is calculated from the measured intensity vs time [Iexp(R,t)].

© 1990 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mie scattering as a technique for the sizing of air bubbles

Gary M. Hansen
Appl. Opt. 24(19) 3214-3220 (1985)

Toward the optimization of double-pulse LIBS underwater: effects of experimental parameters on the reproducibility and dynamics of laser-induced cavitation bubble

Gabriele Cristoforetti, Marco Tiberi, Andrea Simonelli, Paolo Marsili, and Francesco Giammanco
Appl. Opt. 51(7) B30-B41 (2012)

Time-resolved analysis of cavitation induced by CW lasers in absorbing liquids

J.C. Ramirez-San-Juan, E. Rodriguez-Aboytes, A. E. Martinez-Canton, O. Baldovino-Pantaleon, A. Robledo-Martinez, N. Korneev, and R. Ramos-Garcia
Opt. Express 18(9) 8735-8742 (2010)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription