Abstract

NOAA’s fieldable injection-seeded, pulsed, coherent CO2 lidar was developed over a 5-yr period. Its performance and reliability are characterized. Techniques for calibration, alignment, collimation, and for improving detector performance and frequency stability are presented.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. Huffaker, Ed., Feasibility Study of Satellite-Borne Lidar Global Wind Monitoring System, NOAA Tech. Memo. ERL WPL-37 (1978).
  2. M. J. Post, R. A. Richter, R. M. Hardesty, T. R. Lawrence, F. F. Hall, “NOAA’s Pulsed, Coherent, Infrared Doppler Lidar—Characteristics and Data,” Proc. Soc. Photo-Opt. Instr. Eng. 300, 60–65 (1981).
  3. R. M. Hardesty, R. W. Lee, D. L. Davis, “Real-Time Processing and Display of Coherent Lidar Returns,” in Technical Digest, Second Topical Meeting on Coherent Laser Radar, 1–4 Aug. 1983, (Optical Society of America, Washington, DC, 1983).
  4. M. J. Post, W. D. Neff, “Doppler Lidar Measurements of Winds in a Narrow Mountain Valley,” Bull. Am. Meteorol. Soc. 67, 274–281 (1986).
    [CrossRef]
  5. R. M. Hardesty, K. Elmore, M. E. Jackson, “Comparison of Lidar and Radar Wind Measurements Made During JAWS Experiment,” in Proceedings, Twenty-First Conference on Radar Meteorology, 19–23 Sept. 1983, Edmonton, Canada (Am. Met. Soc., 1983), pp. 584–589.
  6. D. B. Parsons, R. M. Hardesty, M. A. Shapiro, “Mesoscale Structure of the Dryline and the Formation of Deep Convection,” in Preprints, International Conference on Monsoon and Mesoscale Meteorology, Nov. 1986, Taiwan (Am. Met. Soc., 1986).
  7. M. J. Post, “Aerosol Backscattering at CO2 Wavelengths: the NOAA Data Base,” Appl. Opt. 23, 2507–2509 (1984).
    [CrossRef] [PubMed]
  8. T. Y. Chang, “Improved Uniform-Field Electrode Profiles for TEA Laser and High Voltage Applications,” Rev. Sci. Instrum. 44, 405–407 (1973).
    [CrossRef]
  9. P. H. Flamant, R. T. Menzies, M. J. Kavaya, U. P. Oppenheim, “Pulse Evolution and Mode Selection Characteristics in a TEA CO2 Laser Perturbed by Injection of External Radiation,” Opt. Commun. 45, 105–111 (1983).
    [CrossRef]
  10. D. V. Willetts, M. R. Harris, “An Investigation into the Origin of Frequency Sweeping in a Hybrid TEA CO2 Laser,” J. Phys. 15, 51–67 (1982).
  11. A. E. Siegman, H. Y. Miller, “Unstable Optical Resonator Loss Calculations Using the Prony Method,” Appl. Opt. 9, 2729–2736 (1970).
    [CrossRef] [PubMed]
  12. R. R. Shannon, J. C. Wyant, Eds., Applied Optics and Optical Engineering, Vol. 10 (Academic, New York, 1983), p. 153.
  13. R. S. Lawrence, J. W. Strohbehn, “A Survey of Clear-Air Propagation Effects Relevant to Optical Communications,” Proc. IEEE 58, 1523–1545 (1970).
    [CrossRef]
  14. R. T. Menzies, P. H. Flamant, M. J. Kavaya, E. N. Kuiper, “Tunable Mode and Line Selection by Injection in a TEA CO2 Laser,” Appl. Opt. 23, 3854–3861 (1984).
    [CrossRef] [PubMed]
  15. Y. Zhao, M. J. Post, R. M. Hardesty, “Receiving Efficiency of Pulsed Coherent Lidars. 1: Theory and 2: Applications,” Appl. Opt. 29, 4111–4119 and 4120–4132 (1990).
    [CrossRef] [PubMed]
  16. A. Gross, M. J. Post, F. F. Hall, “Depolarization, Backscatter, and Attenuation of CO2 Lidar by Cirrus Clouds,” Appl. Opt. 23, 2518–2522 (1984).
    [CrossRef] [PubMed]
  17. F. F. Hall, R. E. Cupp, S. W. Troxel, “Cirrus Cloud Transmittance and Backscatter in the Infrared Measured with a CO2 Lidar,” Appl. Opt. 27, 2510–2516 (1988).
    [CrossRef] [PubMed]
  18. P. J. Neiman, R. M. Hardesty, M. A. Shapiro, R. E. Cupp, “Doppler Lidar Observations of a Downslope Windstorm,” Mon. Weather Rev. 116, 2265–2275 (1988).
    [CrossRef]
  19. W. L. Eberhard, R. E. Cupp, K. R. Healy, “Doppler Lidar Measurement of Profiles of Turbulence and Momentum Flux,” J. Atmos. Oceanic Tech. 6, 809–819 (1989).
    [CrossRef]
  20. P. Lavigne, A. Parent, “Mode Control in Unstable Cassegrainian Resonators,” Proc. Soc. Photo-Opt. Instrum. Eng., Second Conference on Laser Radars, 783, 69–76 (1987).
  21. E. A. Sziklas, A. E. Siegman, “Mode Calculations in Unstable Resonators with Flowing Saturable Gain. 2: Fast Fourier Transform Method,” Appl. Opt. 14, 1874–1889 (1975).
    [CrossRef] [PubMed]
  22. D. Malacara, Ed., Optical Shop Testing (Wiley, New York, 1978).
  23. M. J. Post, “Atmospheric Infrared Backscattering Profiles: Interpretation of Statistical and Temporal Properties,” NOAA Tech. Memo. ERL WPL-122 (1985).
  24. E. Hecht, A. Zajac, Optics (Addison-Wesley, Reading, MA, 1979).
  25. W. J. Witteman, The CO2 Laser (Springer-Verlag, New York, 1987).
  26. A. Yariv, Introduction to Optical Electronics, Second Edition (Holt, Rinehart & Winston, New York, 1976).
  27. M. J. Kavaya, “The JPL Lidar Target Calibration Facility,” in Technical Digest, Third Topical Meeting on Coherent Laser Radar: Technology and Applications (Optical Society of America, Washington, DC, 1985), paper II.1.
  28. L. S. Rothman et al., “The HITRAN Database: 1986 Edition,” Appl. Opt. 26, 4058–4097 (1987).
    [CrossRef] [PubMed]
  29. S. F. Clifford, L. Lading, “Monostatic Diffraction-Limited Lidars: the Impact of Optical Refractive Turbulence,” Appl. Opt. 22, 1696–1701 (1983).
    [CrossRef] [PubMed]
  30. R. G. Frehlich, M. J. Kavaya, “Coherent Laser Radar Performance for General Condition,” submitted to Appl. Opt.
  31. A. E. Siegman, “The Antenna Properties of Optical Heterodyne Receivers,” Appl. Opt. 5, 1588–1594 (1966).
    [CrossRef] [PubMed]
  32. J. H. Shapiro, “Heterodyne Mixing Efficiency for Detector Arrays,” Appl. Opt. 26, 3600–3606 (1987).
    [CrossRef] [PubMed]
  33. B. J. Rye, “Primary Aberration Contributions to Incoherent Backscatter Heterodyne Lidar Returns,” Appl. Opt. 21, 839–844 (1982).
    [CrossRef] [PubMed]

1990 (1)

Y. Zhao, M. J. Post, R. M. Hardesty, “Receiving Efficiency of Pulsed Coherent Lidars. 1: Theory and 2: Applications,” Appl. Opt. 29, 4111–4119 and 4120–4132 (1990).
[CrossRef] [PubMed]

1989 (1)

W. L. Eberhard, R. E. Cupp, K. R. Healy, “Doppler Lidar Measurement of Profiles of Turbulence and Momentum Flux,” J. Atmos. Oceanic Tech. 6, 809–819 (1989).
[CrossRef]

1988 (2)

F. F. Hall, R. E. Cupp, S. W. Troxel, “Cirrus Cloud Transmittance and Backscatter in the Infrared Measured with a CO2 Lidar,” Appl. Opt. 27, 2510–2516 (1988).
[CrossRef] [PubMed]

P. J. Neiman, R. M. Hardesty, M. A. Shapiro, R. E. Cupp, “Doppler Lidar Observations of a Downslope Windstorm,” Mon. Weather Rev. 116, 2265–2275 (1988).
[CrossRef]

1987 (3)

P. Lavigne, A. Parent, “Mode Control in Unstable Cassegrainian Resonators,” Proc. Soc. Photo-Opt. Instrum. Eng., Second Conference on Laser Radars, 783, 69–76 (1987).

L. S. Rothman et al., “The HITRAN Database: 1986 Edition,” Appl. Opt. 26, 4058–4097 (1987).
[CrossRef] [PubMed]

J. H. Shapiro, “Heterodyne Mixing Efficiency for Detector Arrays,” Appl. Opt. 26, 3600–3606 (1987).
[CrossRef] [PubMed]

1986 (1)

M. J. Post, W. D. Neff, “Doppler Lidar Measurements of Winds in a Narrow Mountain Valley,” Bull. Am. Meteorol. Soc. 67, 274–281 (1986).
[CrossRef]

1985 (1)

M. J. Post, “Atmospheric Infrared Backscattering Profiles: Interpretation of Statistical and Temporal Properties,” NOAA Tech. Memo. ERL WPL-122 (1985).

1984 (3)

1983 (2)

S. F. Clifford, L. Lading, “Monostatic Diffraction-Limited Lidars: the Impact of Optical Refractive Turbulence,” Appl. Opt. 22, 1696–1701 (1983).
[CrossRef] [PubMed]

P. H. Flamant, R. T. Menzies, M. J. Kavaya, U. P. Oppenheim, “Pulse Evolution and Mode Selection Characteristics in a TEA CO2 Laser Perturbed by Injection of External Radiation,” Opt. Commun. 45, 105–111 (1983).
[CrossRef]

1982 (2)

D. V. Willetts, M. R. Harris, “An Investigation into the Origin of Frequency Sweeping in a Hybrid TEA CO2 Laser,” J. Phys. 15, 51–67 (1982).

B. J. Rye, “Primary Aberration Contributions to Incoherent Backscatter Heterodyne Lidar Returns,” Appl. Opt. 21, 839–844 (1982).
[CrossRef] [PubMed]

1981 (1)

M. J. Post, R. A. Richter, R. M. Hardesty, T. R. Lawrence, F. F. Hall, “NOAA’s Pulsed, Coherent, Infrared Doppler Lidar—Characteristics and Data,” Proc. Soc. Photo-Opt. Instr. Eng. 300, 60–65 (1981).

1975 (1)

1973 (1)

T. Y. Chang, “Improved Uniform-Field Electrode Profiles for TEA Laser and High Voltage Applications,” Rev. Sci. Instrum. 44, 405–407 (1973).
[CrossRef]

1970 (2)

A. E. Siegman, H. Y. Miller, “Unstable Optical Resonator Loss Calculations Using the Prony Method,” Appl. Opt. 9, 2729–2736 (1970).
[CrossRef] [PubMed]

R. S. Lawrence, J. W. Strohbehn, “A Survey of Clear-Air Propagation Effects Relevant to Optical Communications,” Proc. IEEE 58, 1523–1545 (1970).
[CrossRef]

1966 (1)

Chang, T. Y.

T. Y. Chang, “Improved Uniform-Field Electrode Profiles for TEA Laser and High Voltage Applications,” Rev. Sci. Instrum. 44, 405–407 (1973).
[CrossRef]

Clifford, S. F.

Cupp, R. E.

W. L. Eberhard, R. E. Cupp, K. R. Healy, “Doppler Lidar Measurement of Profiles of Turbulence and Momentum Flux,” J. Atmos. Oceanic Tech. 6, 809–819 (1989).
[CrossRef]

P. J. Neiman, R. M. Hardesty, M. A. Shapiro, R. E. Cupp, “Doppler Lidar Observations of a Downslope Windstorm,” Mon. Weather Rev. 116, 2265–2275 (1988).
[CrossRef]

F. F. Hall, R. E. Cupp, S. W. Troxel, “Cirrus Cloud Transmittance and Backscatter in the Infrared Measured with a CO2 Lidar,” Appl. Opt. 27, 2510–2516 (1988).
[CrossRef] [PubMed]

Davis, D. L.

R. M. Hardesty, R. W. Lee, D. L. Davis, “Real-Time Processing and Display of Coherent Lidar Returns,” in Technical Digest, Second Topical Meeting on Coherent Laser Radar, 1–4 Aug. 1983, (Optical Society of America, Washington, DC, 1983).

Eberhard, W. L.

W. L. Eberhard, R. E. Cupp, K. R. Healy, “Doppler Lidar Measurement of Profiles of Turbulence and Momentum Flux,” J. Atmos. Oceanic Tech. 6, 809–819 (1989).
[CrossRef]

Elmore, K.

R. M. Hardesty, K. Elmore, M. E. Jackson, “Comparison of Lidar and Radar Wind Measurements Made During JAWS Experiment,” in Proceedings, Twenty-First Conference on Radar Meteorology, 19–23 Sept. 1983, Edmonton, Canada (Am. Met. Soc., 1983), pp. 584–589.

Flamant, P. H.

R. T. Menzies, P. H. Flamant, M. J. Kavaya, E. N. Kuiper, “Tunable Mode and Line Selection by Injection in a TEA CO2 Laser,” Appl. Opt. 23, 3854–3861 (1984).
[CrossRef] [PubMed]

P. H. Flamant, R. T. Menzies, M. J. Kavaya, U. P. Oppenheim, “Pulse Evolution and Mode Selection Characteristics in a TEA CO2 Laser Perturbed by Injection of External Radiation,” Opt. Commun. 45, 105–111 (1983).
[CrossRef]

Frehlich, R. G.

R. G. Frehlich, M. J. Kavaya, “Coherent Laser Radar Performance for General Condition,” submitted to Appl. Opt.

Gross, A.

Hall, F. F.

Hardesty, R. M.

Y. Zhao, M. J. Post, R. M. Hardesty, “Receiving Efficiency of Pulsed Coherent Lidars. 1: Theory and 2: Applications,” Appl. Opt. 29, 4111–4119 and 4120–4132 (1990).
[CrossRef] [PubMed]

P. J. Neiman, R. M. Hardesty, M. A. Shapiro, R. E. Cupp, “Doppler Lidar Observations of a Downslope Windstorm,” Mon. Weather Rev. 116, 2265–2275 (1988).
[CrossRef]

M. J. Post, R. A. Richter, R. M. Hardesty, T. R. Lawrence, F. F. Hall, “NOAA’s Pulsed, Coherent, Infrared Doppler Lidar—Characteristics and Data,” Proc. Soc. Photo-Opt. Instr. Eng. 300, 60–65 (1981).

R. M. Hardesty, R. W. Lee, D. L. Davis, “Real-Time Processing and Display of Coherent Lidar Returns,” in Technical Digest, Second Topical Meeting on Coherent Laser Radar, 1–4 Aug. 1983, (Optical Society of America, Washington, DC, 1983).

D. B. Parsons, R. M. Hardesty, M. A. Shapiro, “Mesoscale Structure of the Dryline and the Formation of Deep Convection,” in Preprints, International Conference on Monsoon and Mesoscale Meteorology, Nov. 1986, Taiwan (Am. Met. Soc., 1986).

R. M. Hardesty, K. Elmore, M. E. Jackson, “Comparison of Lidar and Radar Wind Measurements Made During JAWS Experiment,” in Proceedings, Twenty-First Conference on Radar Meteorology, 19–23 Sept. 1983, Edmonton, Canada (Am. Met. Soc., 1983), pp. 584–589.

Harris, M. R.

D. V. Willetts, M. R. Harris, “An Investigation into the Origin of Frequency Sweeping in a Hybrid TEA CO2 Laser,” J. Phys. 15, 51–67 (1982).

Healy, K. R.

W. L. Eberhard, R. E. Cupp, K. R. Healy, “Doppler Lidar Measurement of Profiles of Turbulence and Momentum Flux,” J. Atmos. Oceanic Tech. 6, 809–819 (1989).
[CrossRef]

Hecht, E.

E. Hecht, A. Zajac, Optics (Addison-Wesley, Reading, MA, 1979).

Jackson, M. E.

R. M. Hardesty, K. Elmore, M. E. Jackson, “Comparison of Lidar and Radar Wind Measurements Made During JAWS Experiment,” in Proceedings, Twenty-First Conference on Radar Meteorology, 19–23 Sept. 1983, Edmonton, Canada (Am. Met. Soc., 1983), pp. 584–589.

Kavaya, M. J.

R. T. Menzies, P. H. Flamant, M. J. Kavaya, E. N. Kuiper, “Tunable Mode and Line Selection by Injection in a TEA CO2 Laser,” Appl. Opt. 23, 3854–3861 (1984).
[CrossRef] [PubMed]

P. H. Flamant, R. T. Menzies, M. J. Kavaya, U. P. Oppenheim, “Pulse Evolution and Mode Selection Characteristics in a TEA CO2 Laser Perturbed by Injection of External Radiation,” Opt. Commun. 45, 105–111 (1983).
[CrossRef]

M. J. Kavaya, “The JPL Lidar Target Calibration Facility,” in Technical Digest, Third Topical Meeting on Coherent Laser Radar: Technology and Applications (Optical Society of America, Washington, DC, 1985), paper II.1.

R. G. Frehlich, M. J. Kavaya, “Coherent Laser Radar Performance for General Condition,” submitted to Appl. Opt.

Kuiper, E. N.

Lading, L.

Lavigne, P.

P. Lavigne, A. Parent, “Mode Control in Unstable Cassegrainian Resonators,” Proc. Soc. Photo-Opt. Instrum. Eng., Second Conference on Laser Radars, 783, 69–76 (1987).

Lawrence, R. S.

R. S. Lawrence, J. W. Strohbehn, “A Survey of Clear-Air Propagation Effects Relevant to Optical Communications,” Proc. IEEE 58, 1523–1545 (1970).
[CrossRef]

Lawrence, T. R.

M. J. Post, R. A. Richter, R. M. Hardesty, T. R. Lawrence, F. F. Hall, “NOAA’s Pulsed, Coherent, Infrared Doppler Lidar—Characteristics and Data,” Proc. Soc. Photo-Opt. Instr. Eng. 300, 60–65 (1981).

Lee, R. W.

R. M. Hardesty, R. W. Lee, D. L. Davis, “Real-Time Processing and Display of Coherent Lidar Returns,” in Technical Digest, Second Topical Meeting on Coherent Laser Radar, 1–4 Aug. 1983, (Optical Society of America, Washington, DC, 1983).

Menzies, R. T.

R. T. Menzies, P. H. Flamant, M. J. Kavaya, E. N. Kuiper, “Tunable Mode and Line Selection by Injection in a TEA CO2 Laser,” Appl. Opt. 23, 3854–3861 (1984).
[CrossRef] [PubMed]

P. H. Flamant, R. T. Menzies, M. J. Kavaya, U. P. Oppenheim, “Pulse Evolution and Mode Selection Characteristics in a TEA CO2 Laser Perturbed by Injection of External Radiation,” Opt. Commun. 45, 105–111 (1983).
[CrossRef]

Miller, H. Y.

Neff, W. D.

M. J. Post, W. D. Neff, “Doppler Lidar Measurements of Winds in a Narrow Mountain Valley,” Bull. Am. Meteorol. Soc. 67, 274–281 (1986).
[CrossRef]

Neiman, P. J.

P. J. Neiman, R. M. Hardesty, M. A. Shapiro, R. E. Cupp, “Doppler Lidar Observations of a Downslope Windstorm,” Mon. Weather Rev. 116, 2265–2275 (1988).
[CrossRef]

Oppenheim, U. P.

P. H. Flamant, R. T. Menzies, M. J. Kavaya, U. P. Oppenheim, “Pulse Evolution and Mode Selection Characteristics in a TEA CO2 Laser Perturbed by Injection of External Radiation,” Opt. Commun. 45, 105–111 (1983).
[CrossRef]

Parent, A.

P. Lavigne, A. Parent, “Mode Control in Unstable Cassegrainian Resonators,” Proc. Soc. Photo-Opt. Instrum. Eng., Second Conference on Laser Radars, 783, 69–76 (1987).

Parsons, D. B.

D. B. Parsons, R. M. Hardesty, M. A. Shapiro, “Mesoscale Structure of the Dryline and the Formation of Deep Convection,” in Preprints, International Conference on Monsoon and Mesoscale Meteorology, Nov. 1986, Taiwan (Am. Met. Soc., 1986).

Post, M. J.

Y. Zhao, M. J. Post, R. M. Hardesty, “Receiving Efficiency of Pulsed Coherent Lidars. 1: Theory and 2: Applications,” Appl. Opt. 29, 4111–4119 and 4120–4132 (1990).
[CrossRef] [PubMed]

M. J. Post, W. D. Neff, “Doppler Lidar Measurements of Winds in a Narrow Mountain Valley,” Bull. Am. Meteorol. Soc. 67, 274–281 (1986).
[CrossRef]

M. J. Post, “Atmospheric Infrared Backscattering Profiles: Interpretation of Statistical and Temporal Properties,” NOAA Tech. Memo. ERL WPL-122 (1985).

A. Gross, M. J. Post, F. F. Hall, “Depolarization, Backscatter, and Attenuation of CO2 Lidar by Cirrus Clouds,” Appl. Opt. 23, 2518–2522 (1984).
[CrossRef] [PubMed]

M. J. Post, “Aerosol Backscattering at CO2 Wavelengths: the NOAA Data Base,” Appl. Opt. 23, 2507–2509 (1984).
[CrossRef] [PubMed]

M. J. Post, R. A. Richter, R. M. Hardesty, T. R. Lawrence, F. F. Hall, “NOAA’s Pulsed, Coherent, Infrared Doppler Lidar—Characteristics and Data,” Proc. Soc. Photo-Opt. Instr. Eng. 300, 60–65 (1981).

Richter, R. A.

M. J. Post, R. A. Richter, R. M. Hardesty, T. R. Lawrence, F. F. Hall, “NOAA’s Pulsed, Coherent, Infrared Doppler Lidar—Characteristics and Data,” Proc. Soc. Photo-Opt. Instr. Eng. 300, 60–65 (1981).

Rothman, L. S.

Rye, B. J.

Shapiro, J. H.

Shapiro, M. A.

P. J. Neiman, R. M. Hardesty, M. A. Shapiro, R. E. Cupp, “Doppler Lidar Observations of a Downslope Windstorm,” Mon. Weather Rev. 116, 2265–2275 (1988).
[CrossRef]

D. B. Parsons, R. M. Hardesty, M. A. Shapiro, “Mesoscale Structure of the Dryline and the Formation of Deep Convection,” in Preprints, International Conference on Monsoon and Mesoscale Meteorology, Nov. 1986, Taiwan (Am. Met. Soc., 1986).

Siegman, A. E.

Strohbehn, J. W.

R. S. Lawrence, J. W. Strohbehn, “A Survey of Clear-Air Propagation Effects Relevant to Optical Communications,” Proc. IEEE 58, 1523–1545 (1970).
[CrossRef]

Sziklas, E. A.

Troxel, S. W.

Willetts, D. V.

D. V. Willetts, M. R. Harris, “An Investigation into the Origin of Frequency Sweeping in a Hybrid TEA CO2 Laser,” J. Phys. 15, 51–67 (1982).

Witteman, W. J.

W. J. Witteman, The CO2 Laser (Springer-Verlag, New York, 1987).

Yariv, A.

A. Yariv, Introduction to Optical Electronics, Second Edition (Holt, Rinehart & Winston, New York, 1976).

Zajac, A.

E. Hecht, A. Zajac, Optics (Addison-Wesley, Reading, MA, 1979).

Zhao, Y.

Y. Zhao, M. J. Post, R. M. Hardesty, “Receiving Efficiency of Pulsed Coherent Lidars. 1: Theory and 2: Applications,” Appl. Opt. 29, 4111–4119 and 4120–4132 (1990).
[CrossRef] [PubMed]

Appl. Opt. (12)

M. J. Post, “Aerosol Backscattering at CO2 Wavelengths: the NOAA Data Base,” Appl. Opt. 23, 2507–2509 (1984).
[CrossRef] [PubMed]

A. E. Siegman, H. Y. Miller, “Unstable Optical Resonator Loss Calculations Using the Prony Method,” Appl. Opt. 9, 2729–2736 (1970).
[CrossRef] [PubMed]

R. T. Menzies, P. H. Flamant, M. J. Kavaya, E. N. Kuiper, “Tunable Mode and Line Selection by Injection in a TEA CO2 Laser,” Appl. Opt. 23, 3854–3861 (1984).
[CrossRef] [PubMed]

Y. Zhao, M. J. Post, R. M. Hardesty, “Receiving Efficiency of Pulsed Coherent Lidars. 1: Theory and 2: Applications,” Appl. Opt. 29, 4111–4119 and 4120–4132 (1990).
[CrossRef] [PubMed]

A. Gross, M. J. Post, F. F. Hall, “Depolarization, Backscatter, and Attenuation of CO2 Lidar by Cirrus Clouds,” Appl. Opt. 23, 2518–2522 (1984).
[CrossRef] [PubMed]

F. F. Hall, R. E. Cupp, S. W. Troxel, “Cirrus Cloud Transmittance and Backscatter in the Infrared Measured with a CO2 Lidar,” Appl. Opt. 27, 2510–2516 (1988).
[CrossRef] [PubMed]

E. A. Sziklas, A. E. Siegman, “Mode Calculations in Unstable Resonators with Flowing Saturable Gain. 2: Fast Fourier Transform Method,” Appl. Opt. 14, 1874–1889 (1975).
[CrossRef] [PubMed]

L. S. Rothman et al., “The HITRAN Database: 1986 Edition,” Appl. Opt. 26, 4058–4097 (1987).
[CrossRef] [PubMed]

S. F. Clifford, L. Lading, “Monostatic Diffraction-Limited Lidars: the Impact of Optical Refractive Turbulence,” Appl. Opt. 22, 1696–1701 (1983).
[CrossRef] [PubMed]

A. E. Siegman, “The Antenna Properties of Optical Heterodyne Receivers,” Appl. Opt. 5, 1588–1594 (1966).
[CrossRef] [PubMed]

J. H. Shapiro, “Heterodyne Mixing Efficiency for Detector Arrays,” Appl. Opt. 26, 3600–3606 (1987).
[CrossRef] [PubMed]

B. J. Rye, “Primary Aberration Contributions to Incoherent Backscatter Heterodyne Lidar Returns,” Appl. Opt. 21, 839–844 (1982).
[CrossRef] [PubMed]

Bull. Am. Meteorol. Soc. (1)

M. J. Post, W. D. Neff, “Doppler Lidar Measurements of Winds in a Narrow Mountain Valley,” Bull. Am. Meteorol. Soc. 67, 274–281 (1986).
[CrossRef]

J. Atmos. Oceanic Tech. (1)

W. L. Eberhard, R. E. Cupp, K. R. Healy, “Doppler Lidar Measurement of Profiles of Turbulence and Momentum Flux,” J. Atmos. Oceanic Tech. 6, 809–819 (1989).
[CrossRef]

J. Phys. (1)

D. V. Willetts, M. R. Harris, “An Investigation into the Origin of Frequency Sweeping in a Hybrid TEA CO2 Laser,” J. Phys. 15, 51–67 (1982).

Mon. Weather Rev. (1)

P. J. Neiman, R. M. Hardesty, M. A. Shapiro, R. E. Cupp, “Doppler Lidar Observations of a Downslope Windstorm,” Mon. Weather Rev. 116, 2265–2275 (1988).
[CrossRef]

NOAA Tech. Memo. ERL WPL-122 (1)

M. J. Post, “Atmospheric Infrared Backscattering Profiles: Interpretation of Statistical and Temporal Properties,” NOAA Tech. Memo. ERL WPL-122 (1985).

Opt. Commun. (1)

P. H. Flamant, R. T. Menzies, M. J. Kavaya, U. P. Oppenheim, “Pulse Evolution and Mode Selection Characteristics in a TEA CO2 Laser Perturbed by Injection of External Radiation,” Opt. Commun. 45, 105–111 (1983).
[CrossRef]

Proc. IEEE (1)

R. S. Lawrence, J. W. Strohbehn, “A Survey of Clear-Air Propagation Effects Relevant to Optical Communications,” Proc. IEEE 58, 1523–1545 (1970).
[CrossRef]

Proc. Soc. Photo-Opt. Instr. Eng. (1)

M. J. Post, R. A. Richter, R. M. Hardesty, T. R. Lawrence, F. F. Hall, “NOAA’s Pulsed, Coherent, Infrared Doppler Lidar—Characteristics and Data,” Proc. Soc. Photo-Opt. Instr. Eng. 300, 60–65 (1981).

Rev. Sci. Instrum. (1)

T. Y. Chang, “Improved Uniform-Field Electrode Profiles for TEA Laser and High Voltage Applications,” Rev. Sci. Instrum. 44, 405–407 (1973).
[CrossRef]

Second Conference on Laser Radars (1)

P. Lavigne, A. Parent, “Mode Control in Unstable Cassegrainian Resonators,” Proc. Soc. Photo-Opt. Instrum. Eng., Second Conference on Laser Radars, 783, 69–76 (1987).

Other (11)

D. Malacara, Ed., Optical Shop Testing (Wiley, New York, 1978).

E. Hecht, A. Zajac, Optics (Addison-Wesley, Reading, MA, 1979).

W. J. Witteman, The CO2 Laser (Springer-Verlag, New York, 1987).

A. Yariv, Introduction to Optical Electronics, Second Edition (Holt, Rinehart & Winston, New York, 1976).

M. J. Kavaya, “The JPL Lidar Target Calibration Facility,” in Technical Digest, Third Topical Meeting on Coherent Laser Radar: Technology and Applications (Optical Society of America, Washington, DC, 1985), paper II.1.

R. G. Frehlich, M. J. Kavaya, “Coherent Laser Radar Performance for General Condition,” submitted to Appl. Opt.

R. M. Huffaker, Ed., Feasibility Study of Satellite-Borne Lidar Global Wind Monitoring System, NOAA Tech. Memo. ERL WPL-37 (1978).

R. M. Hardesty, R. W. Lee, D. L. Davis, “Real-Time Processing and Display of Coherent Lidar Returns,” in Technical Digest, Second Topical Meeting on Coherent Laser Radar, 1–4 Aug. 1983, (Optical Society of America, Washington, DC, 1983).

R. M. Hardesty, K. Elmore, M. E. Jackson, “Comparison of Lidar and Radar Wind Measurements Made During JAWS Experiment,” in Proceedings, Twenty-First Conference on Radar Meteorology, 19–23 Sept. 1983, Edmonton, Canada (Am. Met. Soc., 1983), pp. 584–589.

D. B. Parsons, R. M. Hardesty, M. A. Shapiro, “Mesoscale Structure of the Dryline and the Formation of Deep Convection,” in Preprints, International Conference on Monsoon and Mesoscale Meteorology, Nov. 1986, Taiwan (Am. Met. Soc., 1986).

R. R. Shannon, J. C. Wyant, Eds., Applied Optics and Optical Engineering, Vol. 10 (Academic, New York, 1983), p. 153.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Layout of (a) transmitting and (b) receiving optics for the former NOAA Doppler lidar (1983 version) using a hybrid TEA laser. Drawings are to scale.

Fig. 2
Fig. 2

(a) Transmitting and (b) receiving optical layout for the upgraded NOAA Doppler lidar (1989 version). Not to scale. Several elements are common to both subsystems.

Fig. 3
Fig. 3

Temporal pulse shapes (displayed in the space domain) for (a) multimode and (b) single-mode pulses. The data are for 1000 pulse averages of returns from stationary hard targets.

Fig. 4
Fig. 4

Computed resonator output intensity patterns (a) without and (b) with an injection pinhole in the cavity. The resonator is confocal, 3.1 m long, and employs an output coupler whose reflectivity is parabolically tapered. The transverse scale is 4 × 4 cm. The vertical scale is relative, in units of intensity. This figure is provided courtesy of Zhao et al.15

Fig. 5
Fig. 5

Generic I–V plot of a typical photodiode illuminated by various levels of LO power. Two load lines are shown for the bias circuit depicted above—one recommended by many detector manufacturers (dashed) and an improved version (dotted).

Fig. 6
Fig. 6

Typical analog waveforms (after quadrature demodulation to baseband) for solitary single-mode pulses scattered from a stationary target, (left) for the former hybrid design, and (right) for the new injection seeded design without a cavity pinhole. Horizontal scale is 1 μs per division.

Fig. 7
Fig. 7

Frequency variation of the outgoing pulses as sensed by the frequency monitor detector for 1000 consecutive pulses (a) before and (b) after achieving single-mode operation. The 1.25-s sinusoidal variation in frequency apparent in (b) is a drone beat between the PRF and vibration induced LO frequency modulation (see Fig. 9).

Fig. 8
Fig. 8

Sensed velocities of stationary hard targets for the same 1000 pulses of Fig. 7, but after correction for transmitted pulse frequency jitter: (A) before and (C) after single-mode operation. The time history (A and C) and the histogram (B and D) are different displays of the same data.

Fig. 9
Fig. 9

LO loop PZT correction voltage as a function of time, with all loops locked and PRF at 10 Hz. The 50-ms settling time limits the PRF to 20 Hz. The 100-Hz fluctuation during the latter part of the interpulse period is the loop attempting to correct for a 100-Hz vibration. It is only partially successful in this attempt, so the PO/LO beat varies with time (see Fig. 7).

Fig. 10
Fig. 10

Decay of single-mode output energy per pulse with the accumulation of shots for a given sealed-off fill of long TEA gas mixture. Typically we refill the TEA after 150,000 shots.

Fig. 11
Fig. 11

Output pulse energy as a function of time for 1000 consecutive single-mode pulses at 10-Hz PRF, as sensed by the energy monitor detector.

Tables (2)

Tables Icon

Table I Transceiver Characteristics

Tables Icon

Table II Other System Characteristics

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

σ ϕ 2 = 2.92 C n 2 L L o 5 / 3 k 2 ,
Δ f = σ ϕ π · c 2 L c ,
I = sin - 1 ( s d / λ R ) .
Δ ν e = e 2 l N e 8 π 2 o m ν n L c ,
Δ ν t = 2 K R ν E s t 2 π n σ 4 L c C v ,
SNR = P η d π A 2 ρ t α T 0 2 T g 2 η ( R , f ) K h ν B R 2 ,
ρ t = β ( R ) c τ / 2 ,

Metrics