Abstract

The composition of the molten salt bath was shown to exert a strong influence on the gradient-index profile that resulted from the ion exchange of silver for sodium. Two types of additives were used to enhance the ion exchange from a base AgCl melt. Both techniques reduced the profile degradation that normally occurred with long diffusion times, while one technique also increased the refractive index change at 0.6328 μm in a regular fashion from 0.06 to 0.15.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. N. Houde-Walter, D. T. Moore, “Delta-n Control in GRIN Glass by Additives in AgCl Diffusion Baths,” Appl. Opt. 25, 3373–3378 (1986).
    [CrossRef] [PubMed]
  2. M. Garfinkel, “Ion Exchange Between Glass and Molten Salts,” J. Phys. Chem. 72, 4175–4181 (1968).
    [CrossRef]
  3. R. H. Doremus, Glass Science (Wiley, New York, 1973), pp. 165, 257–9.
  4. K. H. Stern, “The Effect of Anions on Sodium-Determined Glass Membrane Potentials in Molten Salts,” J. Phys. Chem. 74, 1329–1337 (1970).
    [CrossRef]
  5. J. A. Marinsky, Ion Exchange (Marcel Dekker, New York, 1969).
  6. K. H. Stern, “Membrane Potentials of Fused Silica in Molten Salts: A Reevaluation,” J. Phys. Chem. 74, 1323–1329 (1970).
    [CrossRef]
  7. M. L. Huggins, “The Refractive Index of Silicate Glasses as a Function of Composition,” J. Opt. Soc. Am. 30, 495–504 (1940).
    [CrossRef]
  8. S. D. Fantone, “Refractive Index and Spectral Models for Gradient-Index Materials,” Appl. Opt. 22, 432–440 (1983).
    [CrossRef] [PubMed]
  9. D. P. Ryan-Howard, D. T. Moore, “Model for the Chromatic Properties of Gradient-Index Glass,” Appl. Opt. 24, 4356–4366 (1985).
    [CrossRef] [PubMed]
  10. S. N. Houde-Walter, “Gradient-Index Profile Control by Ion Exchange in Glass,” Ph.D. Dissertation, U. Rochester, New York (1987).
  11. P. O. McLaughlin, “Thermal Expansion and Temperature Dependence of the Refractive Index in Gradient Refractive Index Glasses,” Ph.D. Dissertation, U. Rochester, New York (1982).
  12. J. J. Miceli, “Infrared Gradient Index Optics: Materials, Fabrication and Testing,” Ph.D. Dissertation, U. Rochester, New York (1982).
  13. V. D. Scott, G. Love, Quantitative Electron-Probe Micro-analysis (Ellis Horwood, Halsted Press, New York, 1983).
  14. D. S. Kindred, U. Rochester; private discussion.
  15. H. Bloom, The Chemistry of Molten Salts (Benjamin, New York, 1967), pp. 65–8, 91–4, 121–123.
  16. H. Bloom, I. A. Weeks, “Densities of Alkali Metal Chloride and Zinc Chloride Melts,” Trans. Faraday Soc. 67, 1410–1415 (1971).
    [CrossRef]
  17. V. A. Khokhlov, M. V. Smirnov, V. E. Khavin, “Relationship Between the Transport Properties and the Ionic Composition of Molten Binary Mixtures of Alkali Metal Halides. Mixtures with a Common Anion,” Soviet Electrochemistry 20, 1381–1385 (1984).
  18. M. B. Panish et al., “Thermodynamic Properties of Molten and Solid Solutions of Silver Chloride and Sodium Chloride,” J. Phys. Chem. 62, 1325–1331 (1958).
    [CrossRef]
  19. R. H. Doremus, Glass Science (Wiley, New York, 1973), p. 267.
  20. E. J. Salstrom, “Thermodynamic Properties of Fused Salt Solutions. VIII. Lead Chloride in Silver Chloride,” J. Am. Chem. Soc. 56, 1272–1275 (1934).
    [CrossRef]
  21. M. F. Lantratov, A. F. Alabyshev, “The Activity of Zinc Chloride in Solutions Containing Chlorides of Alkali Metals,” J. Appl. Chem. U.S.S.R. (Eng. Trans.) 26, 235–240 (1953); J. Appl. Chem. U.S.S.R. (Eng. Trans.) 27, 685–689 (1954).

1986

1985

1984

V. A. Khokhlov, M. V. Smirnov, V. E. Khavin, “Relationship Between the Transport Properties and the Ionic Composition of Molten Binary Mixtures of Alkali Metal Halides. Mixtures with a Common Anion,” Soviet Electrochemistry 20, 1381–1385 (1984).

1983

S. D. Fantone, “Refractive Index and Spectral Models for Gradient-Index Materials,” Appl. Opt. 22, 432–440 (1983).
[CrossRef] [PubMed]

1971

H. Bloom, I. A. Weeks, “Densities of Alkali Metal Chloride and Zinc Chloride Melts,” Trans. Faraday Soc. 67, 1410–1415 (1971).
[CrossRef]

1970

K. H. Stern, “The Effect of Anions on Sodium-Determined Glass Membrane Potentials in Molten Salts,” J. Phys. Chem. 74, 1329–1337 (1970).
[CrossRef]

K. H. Stern, “Membrane Potentials of Fused Silica in Molten Salts: A Reevaluation,” J. Phys. Chem. 74, 1323–1329 (1970).
[CrossRef]

1968

M. Garfinkel, “Ion Exchange Between Glass and Molten Salts,” J. Phys. Chem. 72, 4175–4181 (1968).
[CrossRef]

1958

M. B. Panish et al., “Thermodynamic Properties of Molten and Solid Solutions of Silver Chloride and Sodium Chloride,” J. Phys. Chem. 62, 1325–1331 (1958).
[CrossRef]

1953

M. F. Lantratov, A. F. Alabyshev, “The Activity of Zinc Chloride in Solutions Containing Chlorides of Alkali Metals,” J. Appl. Chem. U.S.S.R. (Eng. Trans.) 26, 235–240 (1953); J. Appl. Chem. U.S.S.R. (Eng. Trans.) 27, 685–689 (1954).

1940

M. L. Huggins, “The Refractive Index of Silicate Glasses as a Function of Composition,” J. Opt. Soc. Am. 30, 495–504 (1940).
[CrossRef]

1934

E. J. Salstrom, “Thermodynamic Properties of Fused Salt Solutions. VIII. Lead Chloride in Silver Chloride,” J. Am. Chem. Soc. 56, 1272–1275 (1934).
[CrossRef]

Alabyshev, A. F.

M. F. Lantratov, A. F. Alabyshev, “The Activity of Zinc Chloride in Solutions Containing Chlorides of Alkali Metals,” J. Appl. Chem. U.S.S.R. (Eng. Trans.) 26, 235–240 (1953); J. Appl. Chem. U.S.S.R. (Eng. Trans.) 27, 685–689 (1954).

Bloom, H.

H. Bloom, I. A. Weeks, “Densities of Alkali Metal Chloride and Zinc Chloride Melts,” Trans. Faraday Soc. 67, 1410–1415 (1971).
[CrossRef]

H. Bloom, The Chemistry of Molten Salts (Benjamin, New York, 1967), pp. 65–8, 91–4, 121–123.

Doremus, R. H.

R. H. Doremus, Glass Science (Wiley, New York, 1973), p. 267.

R. H. Doremus, Glass Science (Wiley, New York, 1973), pp. 165, 257–9.

Fantone, S. D.

S. D. Fantone, “Refractive Index and Spectral Models for Gradient-Index Materials,” Appl. Opt. 22, 432–440 (1983).
[CrossRef] [PubMed]

Garfinkel, M.

M. Garfinkel, “Ion Exchange Between Glass and Molten Salts,” J. Phys. Chem. 72, 4175–4181 (1968).
[CrossRef]

Houde-Walter, S. N.

S. N. Houde-Walter, D. T. Moore, “Delta-n Control in GRIN Glass by Additives in AgCl Diffusion Baths,” Appl. Opt. 25, 3373–3378 (1986).
[CrossRef] [PubMed]

S. N. Houde-Walter, “Gradient-Index Profile Control by Ion Exchange in Glass,” Ph.D. Dissertation, U. Rochester, New York (1987).

Huggins, M. L.

M. L. Huggins, “The Refractive Index of Silicate Glasses as a Function of Composition,” J. Opt. Soc. Am. 30, 495–504 (1940).
[CrossRef]

Khavin, V. E.

V. A. Khokhlov, M. V. Smirnov, V. E. Khavin, “Relationship Between the Transport Properties and the Ionic Composition of Molten Binary Mixtures of Alkali Metal Halides. Mixtures with a Common Anion,” Soviet Electrochemistry 20, 1381–1385 (1984).

Khokhlov, V. A.

V. A. Khokhlov, M. V. Smirnov, V. E. Khavin, “Relationship Between the Transport Properties and the Ionic Composition of Molten Binary Mixtures of Alkali Metal Halides. Mixtures with a Common Anion,” Soviet Electrochemistry 20, 1381–1385 (1984).

Kindred, D. S.

D. S. Kindred, U. Rochester; private discussion.

Lantratov, M. F.

M. F. Lantratov, A. F. Alabyshev, “The Activity of Zinc Chloride in Solutions Containing Chlorides of Alkali Metals,” J. Appl. Chem. U.S.S.R. (Eng. Trans.) 26, 235–240 (1953); J. Appl. Chem. U.S.S.R. (Eng. Trans.) 27, 685–689 (1954).

Love, G.

V. D. Scott, G. Love, Quantitative Electron-Probe Micro-analysis (Ellis Horwood, Halsted Press, New York, 1983).

Marinsky, J. A.

J. A. Marinsky, Ion Exchange (Marcel Dekker, New York, 1969).

McLaughlin, P. O.

P. O. McLaughlin, “Thermal Expansion and Temperature Dependence of the Refractive Index in Gradient Refractive Index Glasses,” Ph.D. Dissertation, U. Rochester, New York (1982).

Miceli, J. J.

J. J. Miceli, “Infrared Gradient Index Optics: Materials, Fabrication and Testing,” Ph.D. Dissertation, U. Rochester, New York (1982).

Moore, D. T.

Panish, M. B.

M. B. Panish et al., “Thermodynamic Properties of Molten and Solid Solutions of Silver Chloride and Sodium Chloride,” J. Phys. Chem. 62, 1325–1331 (1958).
[CrossRef]

Ryan-Howard, D. P.

Salstrom, E. J.

E. J. Salstrom, “Thermodynamic Properties of Fused Salt Solutions. VIII. Lead Chloride in Silver Chloride,” J. Am. Chem. Soc. 56, 1272–1275 (1934).
[CrossRef]

Scott, V. D.

V. D. Scott, G. Love, Quantitative Electron-Probe Micro-analysis (Ellis Horwood, Halsted Press, New York, 1983).

Smirnov, M. V.

V. A. Khokhlov, M. V. Smirnov, V. E. Khavin, “Relationship Between the Transport Properties and the Ionic Composition of Molten Binary Mixtures of Alkali Metal Halides. Mixtures with a Common Anion,” Soviet Electrochemistry 20, 1381–1385 (1984).

Stern, K. H.

K. H. Stern, “The Effect of Anions on Sodium-Determined Glass Membrane Potentials in Molten Salts,” J. Phys. Chem. 74, 1329–1337 (1970).
[CrossRef]

K. H. Stern, “Membrane Potentials of Fused Silica in Molten Salts: A Reevaluation,” J. Phys. Chem. 74, 1323–1329 (1970).
[CrossRef]

Weeks, I. A.

H. Bloom, I. A. Weeks, “Densities of Alkali Metal Chloride and Zinc Chloride Melts,” Trans. Faraday Soc. 67, 1410–1415 (1971).
[CrossRef]

Appl. Opt.

S. D. Fantone, “Refractive Index and Spectral Models for Gradient-Index Materials,” Appl. Opt. 22, 432–440 (1983).
[CrossRef] [PubMed]

Appl. Opt.

J. Opt. Soc. Am.

M. L. Huggins, “The Refractive Index of Silicate Glasses as a Function of Composition,” J. Opt. Soc. Am. 30, 495–504 (1940).
[CrossRef]

J. Am. Chem. Soc.

E. J. Salstrom, “Thermodynamic Properties of Fused Salt Solutions. VIII. Lead Chloride in Silver Chloride,” J. Am. Chem. Soc. 56, 1272–1275 (1934).
[CrossRef]

J. Appl. Chem. U.S.S.R. (Eng. Trans.)

M. F. Lantratov, A. F. Alabyshev, “The Activity of Zinc Chloride in Solutions Containing Chlorides of Alkali Metals,” J. Appl. Chem. U.S.S.R. (Eng. Trans.) 26, 235–240 (1953); J. Appl. Chem. U.S.S.R. (Eng. Trans.) 27, 685–689 (1954).

J. Phys. Chem.

K. H. Stern, “Membrane Potentials of Fused Silica in Molten Salts: A Reevaluation,” J. Phys. Chem. 74, 1323–1329 (1970).
[CrossRef]

J. Phys. Chem.

M. B. Panish et al., “Thermodynamic Properties of Molten and Solid Solutions of Silver Chloride and Sodium Chloride,” J. Phys. Chem. 62, 1325–1331 (1958).
[CrossRef]

M. Garfinkel, “Ion Exchange Between Glass and Molten Salts,” J. Phys. Chem. 72, 4175–4181 (1968).
[CrossRef]

K. H. Stern, “The Effect of Anions on Sodium-Determined Glass Membrane Potentials in Molten Salts,” J. Phys. Chem. 74, 1329–1337 (1970).
[CrossRef]

Soviet Electrochemistry

V. A. Khokhlov, M. V. Smirnov, V. E. Khavin, “Relationship Between the Transport Properties and the Ionic Composition of Molten Binary Mixtures of Alkali Metal Halides. Mixtures with a Common Anion,” Soviet Electrochemistry 20, 1381–1385 (1984).

Trans. Faraday Soc.

H. Bloom, I. A. Weeks, “Densities of Alkali Metal Chloride and Zinc Chloride Melts,” Trans. Faraday Soc. 67, 1410–1415 (1971).
[CrossRef]

Other

R. H. Doremus, Glass Science (Wiley, New York, 1973), p. 267.

J. A. Marinsky, Ion Exchange (Marcel Dekker, New York, 1969).

R. H. Doremus, Glass Science (Wiley, New York, 1973), pp. 165, 257–9.

S. N. Houde-Walter, “Gradient-Index Profile Control by Ion Exchange in Glass,” Ph.D. Dissertation, U. Rochester, New York (1987).

P. O. McLaughlin, “Thermal Expansion and Temperature Dependence of the Refractive Index in Gradient Refractive Index Glasses,” Ph.D. Dissertation, U. Rochester, New York (1982).

J. J. Miceli, “Infrared Gradient Index Optics: Materials, Fabrication and Testing,” Ph.D. Dissertation, U. Rochester, New York (1982).

V. D. Scott, G. Love, Quantitative Electron-Probe Micro-analysis (Ellis Horwood, Halsted Press, New York, 1983).

D. S. Kindred, U. Rochester; private discussion.

H. Bloom, The Chemistry of Molten Salts (Benjamin, New York, 1967), pp. 65–8, 91–4, 121–123.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Effects of Ag2CrO4 on the GRIN profile for a 40-h diffusion at 500°C (X = mole fraction Ag2CrO4). As X increases from 0 to 0.14, the ion exchanges are JS8AOO4, JS8AlO4, JS8AlO5, JS8AlO6.

Fig. 2
Fig. 2

Effects of Ag2SO4 on the GRIN profile for a 24-h diffusion at 500°C (X = mole fraction Ag2SO4). As X increases from 0 to 0.21, the ion exchanges are JS8AOO2, JS8ABOl, JS8ABO2, JS8ABO3.

Fig. 3
Fig. 3

Effects of oxyanion salts, Ag2CrO4 and Ag2SO4, on delta-n.

Fig. 4
Fig. 4

GRIN profile at 0.6471 μm for ion exchange SHW84-24 (Houde-Walter, 1986).

Fig. 5
Fig. 5

GRIN profile at 0.6328 μm for ion exchange JES8702.

Fig. 6
Fig. 6

Effect of Ag2SO4 on concentration profiles of silver and sodium. The solid line is a fifth-order polynomial curve fit: (A) AgCl/Ag2SO4 and (B) AgCl.

Fig. 7
Fig. 7

Effect of Ag2SO4 on the relationship between index of refraction and Ag concentration. The solid line is the HSD model prediction: (A) AgCl/Ag2SO4 and (B) AgCl.

Fig. 8
Fig. 8

Effect of Ag2SO4 on the GRIN profile in alternative glass (Kindred, 1989).

Fig. 9
Fig. 9

Time series for sodium concentration profiles.

Fig. 10
Fig. 10

A2BCl4 complex ion in a mixture of salts ACI and BCl2.

Tables (5)

Tables Icon

Table I BL2406 Glass Data

Tables Icon

Table II Ion Exchange Process Parameters

Tables Icon

Table III Ion Exchange Results

Tables Icon

Table IV Microprobe Analysis of GRIN Glass Composition; Both Diffusions Were ~24 h at 501°C

Tables Icon

Table V Effect of ZnCl2 on Δn for 40-h/500°C Diffusions (SHW Samples, Houde-Walter, 1986)

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

( Ag X ) salt + ( Na Y ) glass ( Ag Y ) glass + ( Na X ) salt ,
K = ( A ) g ( B ) s ( A ) s ( B ) g ,
( i ) γ i X i .
( A ) g ( B ) g = ( X A X B ) g n ,
CrO 4 < PO 4 < NO 3 < SO 4 .

Metrics