Abstract

A series of TiO2 flint glasses has been developed for producing GRIN glass by ion exchange. Both positive and negative axial and radial gradients were fabricated in high index glasses by exchange of Li+ for Na+ and Na+ for Li+, respectively. Index changes to 0.05 and depths up to 6 mm were achieved and a wide variety of index profiles are shown.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Caldwell, D. T. Moore, “Design of Gradient-Index Lens Systems for Disk Format Cameras,” Appl. Opt. 25, 3351–3355 (1986).
    [CrossRef] [PubMed]
  2. D. P. Ryan-Howard, “Chromatic Properties of Gradient Index Glass,” Ph.D. Thesis, U. Rochester, New York (1983), p. 63.
  3. D. S. Kindred, D. T. Moore, “Design, Fabrication and Testing of a Gradient Index Binocular Objective,” Appl. Opt. 27, 492–495 (1988).
    [CrossRef] [PubMed]
  4. S. N. Houde-Walter, D. T. Moore, “Delta-n Control in GRIN Glass by Additives in AgCl Diffusion Baths,” Appl. Opt. 25, 3373–3378 (1986).
    [CrossRef] [PubMed]
  5. R. H. Doremus, Glass Science (Wiley, New York, 1973), p. 259.
  6. Ref. 5, p. 258.
  7. Ref. 2, p. 39.
  8. J. L. Coutaz, P. C. Jaussaud, “High Index Gradient in Glass by Ion Exchange,” Appl. Opt. 21, 1063–1065 (1982).
    [CrossRef] [PubMed]
  9. S. D. Fantone, “Design, Engineering and Manufacturing Aspects of Gradient Index Optical Components,” Ph.D. Thesis, U. Rochester, New York (1979).
  10. Ref. 2, p. 39.
  11. Ref. 5, p. 162.
  12. G. H. Frischat, Ionic Diffusion in Oxide Glasses (Trans Tech Publications, Bay Village, OH, 1975), p. 80.
  13. Ref. 5, p. 161.
  14. O. V. Mazurin et al., eds. Handbook of Glass Data, Part C, Ternary Silicates (Elsevier, New York), 1987, p. 566.
  15. Measurements were performed by Corning Engineering Laboratory Services, Corning Glass, Corning, NY.
  16. X. X. Levin et al., Phase Diagrams for Ceramists (American Ceramic Society, Columbus, OH, 1964).
  17. S. N. Houde-Walter, D. T. Moore, “Real-Time Index Profile Measurement During GRIN Glass Fabrication,” Appl. Opt. 27, 508–515 (1988).
    [CrossRef] [PubMed]
  18. R. C. Weast, Ed., Handbook of Chemistry and Physics (CRC Press, Boca Raton, FL, 1980), p. B-149.
  19. P. J. Sands, “Third-Order Aberrations of Inhomogeneous Lenses,” J. Opt. Soc. Am. 60, 1436–1443 (1970).
    [CrossRef]
  20. Gradient Index Design Data Sheet, Gradient Lens Corp., 207 Tremont St., Rochester, NY 14608 (1989).
  21. E. W. Marchand, Gradient Index Optics (Academic, New York, 1978), p. 97.
  22. J. B. Caldwell, “Sol-Gel Method for Fabricating Gradient Index Glass,” Ph.D. Thesis, U. Rochester, New York (1989), p. 154.

1988 (2)

1986 (2)

1982 (1)

1970 (1)

Caldwell, J. B.

J. B. Caldwell, D. T. Moore, “Design of Gradient-Index Lens Systems for Disk Format Cameras,” Appl. Opt. 25, 3351–3355 (1986).
[CrossRef] [PubMed]

J. B. Caldwell, “Sol-Gel Method for Fabricating Gradient Index Glass,” Ph.D. Thesis, U. Rochester, New York (1989), p. 154.

Coutaz, J. L.

Doremus, R. H.

R. H. Doremus, Glass Science (Wiley, New York, 1973), p. 259.

Fantone, S. D.

S. D. Fantone, “Design, Engineering and Manufacturing Aspects of Gradient Index Optical Components,” Ph.D. Thesis, U. Rochester, New York (1979).

Frischat, G. H.

G. H. Frischat, Ionic Diffusion in Oxide Glasses (Trans Tech Publications, Bay Village, OH, 1975), p. 80.

Houde-Walter, S. N.

Jaussaud, P. C.

Kindred, D. S.

Levin, X. X.

X. X. Levin et al., Phase Diagrams for Ceramists (American Ceramic Society, Columbus, OH, 1964).

Marchand, E. W.

E. W. Marchand, Gradient Index Optics (Academic, New York, 1978), p. 97.

Moore, D. T.

Ryan-Howard, D. P.

D. P. Ryan-Howard, “Chromatic Properties of Gradient Index Glass,” Ph.D. Thesis, U. Rochester, New York (1983), p. 63.

Sands, P. J.

Appl. Opt. (5)

J. Opt. Soc. Am. (1)

Other (16)

D. P. Ryan-Howard, “Chromatic Properties of Gradient Index Glass,” Ph.D. Thesis, U. Rochester, New York (1983), p. 63.

R. H. Doremus, Glass Science (Wiley, New York, 1973), p. 259.

Ref. 5, p. 258.

Ref. 2, p. 39.

S. D. Fantone, “Design, Engineering and Manufacturing Aspects of Gradient Index Optical Components,” Ph.D. Thesis, U. Rochester, New York (1979).

Ref. 2, p. 39.

Ref. 5, p. 162.

G. H. Frischat, Ionic Diffusion in Oxide Glasses (Trans Tech Publications, Bay Village, OH, 1975), p. 80.

Ref. 5, p. 161.

O. V. Mazurin et al., eds. Handbook of Glass Data, Part C, Ternary Silicates (Elsevier, New York), 1987, p. 566.

Measurements were performed by Corning Engineering Laboratory Services, Corning Glass, Corning, NY.

X. X. Levin et al., Phase Diagrams for Ceramists (American Ceramic Society, Columbus, OH, 1964).

R. C. Weast, Ed., Handbook of Chemistry and Physics (CRC Press, Boca Raton, FL, 1980), p. B-149.

Gradient Index Design Data Sheet, Gradient Lens Corp., 207 Tremont St., Rochester, NY 14608 (1989).

E. W. Marchand, Gradient Index Optics (Academic, New York, 1978), p. 97.

J. B. Caldwell, “Sol-Gel Method for Fabricating Gradient Index Glass,” Ph.D. Thesis, U. Rochester, New York (1989), p. 154.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Index of refraction vs lithia concentration for glasses in the system 20 TiO2 + X Li2O + (25 − X) Na2O + 55 SiO2. Glasses were cast from a melt. Index measurements were made with a Pulfrich refractometer. (b) n + Δn for each glass after exchange of Li+ for Na+.

Fig. 2
Fig. 2

Index profile of X = 0 glass at 632.8 nm after ion exchange in LiCl/CaCl2 at 550°C for (a) 72 h and (b) 240 h.

Fig. 3
Fig. 3

Index profiles for glasses with various Li2O content after Li+ for Na+ exchange from a LiCl/CaCl2 bath at 550°C for 72 h.

Fig. 4
Fig. 4

Index of refraction profile for the X = 3 glass at 514.5 nm after 72 h at 550°C in LiCl/CaCl2.

Fig. 5
Fig. 5

Radial gradient profile by Li+ for Na+ exchange in the X = 0 glass for 72 h at 550°C.

Fig. 6
Fig. 6

Radial gradient profile by Li+ for Na+ exchange in the X = 10 glass for 144 h at 550°C.

Fig. 7
Fig. 7

Axial gradient-index profile for the Na+ for Li+ exchange. X = 10 glass in NaNO3 at 550°C for 53 h.

Fig. 8
Fig. 8

Index profile for a radial gradient (Wood) lens by exchange of Na+ for Li+: (a) X = 10 glass in NaNO3 at 550°C for 96 h; (b) X = 10 glass in NaNO3 at 550°C for 144 h.

Fig. 9
Fig. 9

Photo of a Wood lens made from a GRIN rod with the profile shown in Fig. 8(a).

Fig. 10
Fig. 10

Theoretical MTF of a Wood lens made by Na+ for Li+ exchange after (a) 96 h and (b) 144 h.

Tables (1)

Tables Icon

Table I Glasses for Li+-Na+ exchange in the system 0.20 TiO2 + (0.25 − X) Na2O + X Li2O + 0.55 SiO2

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

N = 1.6714 + 0.00174 r 2 + 0.000006 r 4 .
N = 1.6458 - 0.00164 r 2 - 0.00006 r 4 .
N = 1.6440 - 0.00162 r 2 - 0.000028 r 4 .
N = N 00 + N 01 z
σ 1 = - C 2 N 01 y a 4 2 n u a k ,
f / No . = 0.15 Δ n .
N = N 00 + N 10 r 2 + N 20 r 4 + .
f = - 1 2 N 10 t ,

Metrics