Abstract

A gradient index (GRIN) lens, when processed by a spherical curvature at its endface, yields the equivalent aspheric effect, if the curvature is adequately optimized with refractive index distribution coefficients. Aplanatic lens systems of infinite or finite conjugates can be made by utilizing the new type of GRIN lens.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Sharma, D. V. Kumar, A. K. Ghatak, “Tracing Rays Through Gradient-Index Media: a New Method,” Appl. Opt. 21, 984–987 (1982).
    [Crossref] [PubMed]
  2. H. Nishi, H. Ichikawa, M. Toyama, I. Kitano, “Gradient-Index Objective Lens for the Compact Disk System,” Appl. Opt. 25, 3340–3344 (1986).
    [Crossref] [PubMed]
  3. I. Kitano, H. Ueno, M. Toyama, Gradient-Index Lens for Low-loss Coupling of a Laser Diode to Single-Mode Fiber,” Appl. Opt. 25, 3336–3338 (1986).
    [Crossref] [PubMed]
  4. K. Kakimoto, H. Honmou, K. Kaede, “A New Gradient-Index Rod Lens for High Efficiency LD-SMF Coupling,” Proc. Soc. Photo-Opt. Instrum. Eng. 994, 18–24 (1988).
  5. D. T. Moore, “Gradient-Index Optics: a Review,” Appl. Opt. 19, 1035–1038 (1980).
    [Crossref] [PubMed]
  6. P. O. Mclaughlin, M. Toyama, I. Kitano, “Axial Gradient-Index Singlet Collimator Lens for the Compact Disk System,” Proc. Soc. Photo-Opt. Instrum. Eng. 695, 194–198 (1986).
  7. S. Kittaka, T. Yamane, Y. Kaite, M. Toyama, “Axial Gradient-Index Doublet Objective for Optical Disk Systems,” in Technical Digest, MOC/GRIN ’89, Tokyo (1989), paper G4, pp. 152–155.

1988 (1)

K. Kakimoto, H. Honmou, K. Kaede, “A New Gradient-Index Rod Lens for High Efficiency LD-SMF Coupling,” Proc. Soc. Photo-Opt. Instrum. Eng. 994, 18–24 (1988).

1986 (3)

1982 (1)

1980 (1)

Ghatak, A. K.

Honmou, H.

K. Kakimoto, H. Honmou, K. Kaede, “A New Gradient-Index Rod Lens for High Efficiency LD-SMF Coupling,” Proc. Soc. Photo-Opt. Instrum. Eng. 994, 18–24 (1988).

Ichikawa, H.

Kaede, K.

K. Kakimoto, H. Honmou, K. Kaede, “A New Gradient-Index Rod Lens for High Efficiency LD-SMF Coupling,” Proc. Soc. Photo-Opt. Instrum. Eng. 994, 18–24 (1988).

Kaite, Y.

S. Kittaka, T. Yamane, Y. Kaite, M. Toyama, “Axial Gradient-Index Doublet Objective for Optical Disk Systems,” in Technical Digest, MOC/GRIN ’89, Tokyo (1989), paper G4, pp. 152–155.

Kakimoto, K.

K. Kakimoto, H. Honmou, K. Kaede, “A New Gradient-Index Rod Lens for High Efficiency LD-SMF Coupling,” Proc. Soc. Photo-Opt. Instrum. Eng. 994, 18–24 (1988).

Kitano, I.

Kittaka, S.

S. Kittaka, T. Yamane, Y. Kaite, M. Toyama, “Axial Gradient-Index Doublet Objective for Optical Disk Systems,” in Technical Digest, MOC/GRIN ’89, Tokyo (1989), paper G4, pp. 152–155.

Kumar, D. V.

Mclaughlin, P. O.

P. O. Mclaughlin, M. Toyama, I. Kitano, “Axial Gradient-Index Singlet Collimator Lens for the Compact Disk System,” Proc. Soc. Photo-Opt. Instrum. Eng. 695, 194–198 (1986).

Moore, D. T.

Nishi, H.

Sharma, A.

Toyama, M.

I. Kitano, H. Ueno, M. Toyama, Gradient-Index Lens for Low-loss Coupling of a Laser Diode to Single-Mode Fiber,” Appl. Opt. 25, 3336–3338 (1986).
[Crossref] [PubMed]

P. O. Mclaughlin, M. Toyama, I. Kitano, “Axial Gradient-Index Singlet Collimator Lens for the Compact Disk System,” Proc. Soc. Photo-Opt. Instrum. Eng. 695, 194–198 (1986).

H. Nishi, H. Ichikawa, M. Toyama, I. Kitano, “Gradient-Index Objective Lens for the Compact Disk System,” Appl. Opt. 25, 3340–3344 (1986).
[Crossref] [PubMed]

S. Kittaka, T. Yamane, Y. Kaite, M. Toyama, “Axial Gradient-Index Doublet Objective for Optical Disk Systems,” in Technical Digest, MOC/GRIN ’89, Tokyo (1989), paper G4, pp. 152–155.

Ueno, H.

Yamane, T.

S. Kittaka, T. Yamane, Y. Kaite, M. Toyama, “Axial Gradient-Index Doublet Objective for Optical Disk Systems,” in Technical Digest, MOC/GRIN ’89, Tokyo (1989), paper G4, pp. 152–155.

Appl. Opt. (4)

Proc. Soc. Photo-Opt. Instrum. Eng. (2)

P. O. Mclaughlin, M. Toyama, I. Kitano, “Axial Gradient-Index Singlet Collimator Lens for the Compact Disk System,” Proc. Soc. Photo-Opt. Instrum. Eng. 695, 194–198 (1986).

K. Kakimoto, H. Honmou, K. Kaede, “A New Gradient-Index Rod Lens for High Efficiency LD-SMF Coupling,” Proc. Soc. Photo-Opt. Instrum. Eng. 994, 18–24 (1988).

Other (1)

S. Kittaka, T. Yamane, Y. Kaite, M. Toyama, “Axial Gradient-Index Doublet Objective for Optical Disk Systems,” in Technical Digest, MOC/GRIN ’89, Tokyo (1989), paper G4, pp. 152–155.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Plano-convex R-GI lens of an infinite conjugate used for a CD pickup objective.

Fig. 2
Fig. 2

Flow chart of a lens design.

Fig. 3
Fig. 3

Tolerance region for controlling the gradient profile of a preform rod with plain faces at infinite conjugate.

Fig. 4
Fig. 4

Wavefront error interferogram evaluated by ZAPP at a different image height.

Fig. 5
Fig. 5

Wavefront error and spot peak intensity as a function of image height.

Fig. 6
Fig. 6

Fabrication tolerance for surface inclination (Δθ) and radius of curvature (ΔR).

Fig. 7
Fig. 7

Alignment tolerance for the tilt of a GRIN lens (Δϕl), disk (Δϕd), and launched laser beam (ΔϕL).

Fig. 8
Fig. 8

Finite conjugate for coupling a DFB laser diode to a single-mode fiber by the doublet of a plano-convex radial gradient index lens and a conventional SELFOC lens.

Fig. 9
Fig. 9

Tolerance region for controlling the gradient profile of a preform rod with plain faces at an infinite conjugate.

Fig. 10
Fig. 10

Coupling loss between a LD and SMF as the function of a different LD radiation pattern.

Fig. 11
Fig. 11

Fabrication tolerance for endface inclination (Δθ) and radius of curvature (ΔR).

Fig. 12
Fig. 12

Refractive index distribution of a Z-GI lens in the axial (depth) direction and the tolerance of its linear distribution coefficient

Fig. 13
Fig. 13

Configuration of a Z-GI doublet objective with a high N.A.

Fig. 14
Fig. 14

Tolerance for the lens tilt (Δθ) and lens thickness (ΔZ): suffix o, Z-GI lens; m, homogeneous meniscus.

Fig. 15
Fig. 15

Compound lens system comprising axial and R-GI lenses used at a finite conjugate.

Tables (1)

Tables Icon

Table I Distribution of Aberration In a Wavefront Analyzed by an Eighth-Order Zernike Polynomial

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n 2 ( r ) = n 0 2 [ 1 - ( g r ) 2 + h 4 ( g r ) 4 + h 6 ( g r ) 6 + h 8 ( g r ) 8 ] ,
[ x 2 x ˙ 2 ] = [ 1 L 2 0 1 ] [ 1 0 - ϕ 2 n 0 ] [ A B C D ] [ 1 0 - ϕ 1 / n 0 1 / n 0 ] [ 1 L 1 0 1 ] [ x 1 x ˙ 1 ] ,
[ x 2 x ˙ 2 ] = [ K 1 - L 2 ϕ 0 - ϕ K 2 - L 1 ϕ ] [ x 1 x ˙ 1 ] ,
n ( z ) = n 0 + K 1 z + K 2 z 2 + K 3 z 3 + ,

Metrics