Abstract

The tuning range and bandwidth of an ArF laser were measured using 1 + 1 resonantly enhanced multiphoton ionization of NO. Operated as an injection-seeded oscillator/amplifier combination, the tuning range was 51,560–51,810 cm−1; operated with single pass amplification of the oscillator, the tuning range was 51,560–51,765 cm−1. In both cases, the laser bandwidth, determined from the linewidth, was 0.21 ± 0.06 cm−1. Rotational lines in the β(7,0), γ(3,0), and (0,1) bands were observed including several previously unreported lines.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Kligler, C. K. Rhodes, “Observation of Two-Photon Excitation of the H2E,F1∑ State,” Phys. Rev. Lett. 40, 309–313 (1978).
    [CrossRef]
  2. D. J. Kligler, J. Bokor, C. K. Rhodes, “Collisional and Radiative Properties of the H2 E,F∑g+ 1 State,” Phys. Rev. A 21, 607–617 (1980).
    [CrossRef]
  3. W. K. Bischel, J. Bokor, D. J. Kligler, C. K. Rhodes, “Nonlinear Optical Processes in Atoms and Molecules Using Rare-Gas Halide Lasers,” IEEE J. Quantum Electron. QE-15, 380–392 (1979).
    [CrossRef]
  4. S. Gerstenkorn, P. Luc, Atlas du spectre d’absorption de la molecule d’iode (Editions du CNRS, Paris, 1978).
  5. I. Dabrowski, “The Lyman and Werner Bands of H2,” Can. J. Phys. 62, 1639–1664 (1984).
    [CrossRef]
  6. P. Senn, K. Dressler, “Spectroscopic Identification of Rovibronic Levels Lying Above the Potential Barrier of the EF∑g+ 1 Double-Minimum State of the H2 Molecule,” J. Chem. Phys. 87, 6908–6914 (1987).
    [CrossRef]
  7. K. P. Huber, G. Herzberg, Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979), pp. 474–480.
  8. T. Srinivasan, H. Egger, H. Pummer, C. K. Rhodes, “Generation of Extreme Ultraviolet Radiation at 79 nm by Sum Frequency Mixing,” IEEE J. Quantum Electron. QE-19, 1270–1276 (1983).
    [CrossRef]
  9. M. Nicolet, S. Cieslik, R. Kennes, “Rotational Structure and Absorption Cross Sections from 300 K to 190 K of the Schumann-Runge Bands,” Aeronom. Acta A 318 (1987).
  10. R. Gallusser, K. Dressler, “Multistate Vibronic Coupling Between the Excited 2Π States of the NO Molecule,” J. Chem. Phys. 76, 4311–4327 (1982).
    [CrossRef]
  11. H. Okabe, Photochemistry of Small Molecules (Wiley-Interscience, New York, 1978), p. 39.
  12. K. Shibuya, F. Stuhl, “Fluorescence Lifetime and Collisional Quenching of the Predissociative NO B2Π(v′ = 7) State,” Chem. Phys. 79, 367–381 (1983).
    [CrossRef]
  13. W. Hack, R. K. Sander, J. J. Valentini, N. S. Nogar, “Dynamics of 14N16O and 15N18O Excited with an ArF-Exciplex Laser at 193 nm,” Mol. Phys. 56, 977–987 (1985).
    [CrossRef]
  14. H. Rottke, H. Zacharias, “Photoionization of Single Rotational Levels in Excited B2Π, C2Π, and D2∑+ States of 14N16O,” J. Chem. Phys. 83, 4831–4844 (1985).
    [CrossRef]
  15. W. Demtroder, Laser Spectroscopy (Springer-Verlag, Berlin, 1982), pp. 105–111.

1987 (2)

P. Senn, K. Dressler, “Spectroscopic Identification of Rovibronic Levels Lying Above the Potential Barrier of the EF∑g+ 1 Double-Minimum State of the H2 Molecule,” J. Chem. Phys. 87, 6908–6914 (1987).
[CrossRef]

M. Nicolet, S. Cieslik, R. Kennes, “Rotational Structure and Absorption Cross Sections from 300 K to 190 K of the Schumann-Runge Bands,” Aeronom. Acta A 318 (1987).

1985 (2)

W. Hack, R. K. Sander, J. J. Valentini, N. S. Nogar, “Dynamics of 14N16O and 15N18O Excited with an ArF-Exciplex Laser at 193 nm,” Mol. Phys. 56, 977–987 (1985).
[CrossRef]

H. Rottke, H. Zacharias, “Photoionization of Single Rotational Levels in Excited B2Π, C2Π, and D2∑+ States of 14N16O,” J. Chem. Phys. 83, 4831–4844 (1985).
[CrossRef]

1984 (1)

I. Dabrowski, “The Lyman and Werner Bands of H2,” Can. J. Phys. 62, 1639–1664 (1984).
[CrossRef]

1983 (2)

T. Srinivasan, H. Egger, H. Pummer, C. K. Rhodes, “Generation of Extreme Ultraviolet Radiation at 79 nm by Sum Frequency Mixing,” IEEE J. Quantum Electron. QE-19, 1270–1276 (1983).
[CrossRef]

K. Shibuya, F. Stuhl, “Fluorescence Lifetime and Collisional Quenching of the Predissociative NO B2Π(v′ = 7) State,” Chem. Phys. 79, 367–381 (1983).
[CrossRef]

1982 (1)

R. Gallusser, K. Dressler, “Multistate Vibronic Coupling Between the Excited 2Π States of the NO Molecule,” J. Chem. Phys. 76, 4311–4327 (1982).
[CrossRef]

1980 (1)

D. J. Kligler, J. Bokor, C. K. Rhodes, “Collisional and Radiative Properties of the H2 E,F∑g+ 1 State,” Phys. Rev. A 21, 607–617 (1980).
[CrossRef]

1979 (1)

W. K. Bischel, J. Bokor, D. J. Kligler, C. K. Rhodes, “Nonlinear Optical Processes in Atoms and Molecules Using Rare-Gas Halide Lasers,” IEEE J. Quantum Electron. QE-15, 380–392 (1979).
[CrossRef]

1978 (1)

D. J. Kligler, C. K. Rhodes, “Observation of Two-Photon Excitation of the H2E,F1∑ State,” Phys. Rev. Lett. 40, 309–313 (1978).
[CrossRef]

Bischel, W. K.

W. K. Bischel, J. Bokor, D. J. Kligler, C. K. Rhodes, “Nonlinear Optical Processes in Atoms and Molecules Using Rare-Gas Halide Lasers,” IEEE J. Quantum Electron. QE-15, 380–392 (1979).
[CrossRef]

Bokor, J.

D. J. Kligler, J. Bokor, C. K. Rhodes, “Collisional and Radiative Properties of the H2 E,F∑g+ 1 State,” Phys. Rev. A 21, 607–617 (1980).
[CrossRef]

W. K. Bischel, J. Bokor, D. J. Kligler, C. K. Rhodes, “Nonlinear Optical Processes in Atoms and Molecules Using Rare-Gas Halide Lasers,” IEEE J. Quantum Electron. QE-15, 380–392 (1979).
[CrossRef]

Cieslik, S.

M. Nicolet, S. Cieslik, R. Kennes, “Rotational Structure and Absorption Cross Sections from 300 K to 190 K of the Schumann-Runge Bands,” Aeronom. Acta A 318 (1987).

Dabrowski, I.

I. Dabrowski, “The Lyman and Werner Bands of H2,” Can. J. Phys. 62, 1639–1664 (1984).
[CrossRef]

Demtroder, W.

W. Demtroder, Laser Spectroscopy (Springer-Verlag, Berlin, 1982), pp. 105–111.

Dressler, K.

P. Senn, K. Dressler, “Spectroscopic Identification of Rovibronic Levels Lying Above the Potential Barrier of the EF∑g+ 1 Double-Minimum State of the H2 Molecule,” J. Chem. Phys. 87, 6908–6914 (1987).
[CrossRef]

R. Gallusser, K. Dressler, “Multistate Vibronic Coupling Between the Excited 2Π States of the NO Molecule,” J. Chem. Phys. 76, 4311–4327 (1982).
[CrossRef]

Egger, H.

T. Srinivasan, H. Egger, H. Pummer, C. K. Rhodes, “Generation of Extreme Ultraviolet Radiation at 79 nm by Sum Frequency Mixing,” IEEE J. Quantum Electron. QE-19, 1270–1276 (1983).
[CrossRef]

Gallusser, R.

R. Gallusser, K. Dressler, “Multistate Vibronic Coupling Between the Excited 2Π States of the NO Molecule,” J. Chem. Phys. 76, 4311–4327 (1982).
[CrossRef]

Gerstenkorn, S.

S. Gerstenkorn, P. Luc, Atlas du spectre d’absorption de la molecule d’iode (Editions du CNRS, Paris, 1978).

Hack, W.

W. Hack, R. K. Sander, J. J. Valentini, N. S. Nogar, “Dynamics of 14N16O and 15N18O Excited with an ArF-Exciplex Laser at 193 nm,” Mol. Phys. 56, 977–987 (1985).
[CrossRef]

Herzberg, G.

K. P. Huber, G. Herzberg, Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979), pp. 474–480.

Huber, K. P.

K. P. Huber, G. Herzberg, Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979), pp. 474–480.

Kennes, R.

M. Nicolet, S. Cieslik, R. Kennes, “Rotational Structure and Absorption Cross Sections from 300 K to 190 K of the Schumann-Runge Bands,” Aeronom. Acta A 318 (1987).

Kligler, D. J.

D. J. Kligler, J. Bokor, C. K. Rhodes, “Collisional and Radiative Properties of the H2 E,F∑g+ 1 State,” Phys. Rev. A 21, 607–617 (1980).
[CrossRef]

W. K. Bischel, J. Bokor, D. J. Kligler, C. K. Rhodes, “Nonlinear Optical Processes in Atoms and Molecules Using Rare-Gas Halide Lasers,” IEEE J. Quantum Electron. QE-15, 380–392 (1979).
[CrossRef]

D. J. Kligler, C. K. Rhodes, “Observation of Two-Photon Excitation of the H2E,F1∑ State,” Phys. Rev. Lett. 40, 309–313 (1978).
[CrossRef]

Luc, P.

S. Gerstenkorn, P. Luc, Atlas du spectre d’absorption de la molecule d’iode (Editions du CNRS, Paris, 1978).

Nicolet, M.

M. Nicolet, S. Cieslik, R. Kennes, “Rotational Structure and Absorption Cross Sections from 300 K to 190 K of the Schumann-Runge Bands,” Aeronom. Acta A 318 (1987).

Nogar, N. S.

W. Hack, R. K. Sander, J. J. Valentini, N. S. Nogar, “Dynamics of 14N16O and 15N18O Excited with an ArF-Exciplex Laser at 193 nm,” Mol. Phys. 56, 977–987 (1985).
[CrossRef]

Okabe, H.

H. Okabe, Photochemistry of Small Molecules (Wiley-Interscience, New York, 1978), p. 39.

Pummer, H.

T. Srinivasan, H. Egger, H. Pummer, C. K. Rhodes, “Generation of Extreme Ultraviolet Radiation at 79 nm by Sum Frequency Mixing,” IEEE J. Quantum Electron. QE-19, 1270–1276 (1983).
[CrossRef]

Rhodes, C. K.

T. Srinivasan, H. Egger, H. Pummer, C. K. Rhodes, “Generation of Extreme Ultraviolet Radiation at 79 nm by Sum Frequency Mixing,” IEEE J. Quantum Electron. QE-19, 1270–1276 (1983).
[CrossRef]

D. J. Kligler, J. Bokor, C. K. Rhodes, “Collisional and Radiative Properties of the H2 E,F∑g+ 1 State,” Phys. Rev. A 21, 607–617 (1980).
[CrossRef]

W. K. Bischel, J. Bokor, D. J. Kligler, C. K. Rhodes, “Nonlinear Optical Processes in Atoms and Molecules Using Rare-Gas Halide Lasers,” IEEE J. Quantum Electron. QE-15, 380–392 (1979).
[CrossRef]

D. J. Kligler, C. K. Rhodes, “Observation of Two-Photon Excitation of the H2E,F1∑ State,” Phys. Rev. Lett. 40, 309–313 (1978).
[CrossRef]

Rottke, H.

H. Rottke, H. Zacharias, “Photoionization of Single Rotational Levels in Excited B2Π, C2Π, and D2∑+ States of 14N16O,” J. Chem. Phys. 83, 4831–4844 (1985).
[CrossRef]

Sander, R. K.

W. Hack, R. K. Sander, J. J. Valentini, N. S. Nogar, “Dynamics of 14N16O and 15N18O Excited with an ArF-Exciplex Laser at 193 nm,” Mol. Phys. 56, 977–987 (1985).
[CrossRef]

Senn, P.

P. Senn, K. Dressler, “Spectroscopic Identification of Rovibronic Levels Lying Above the Potential Barrier of the EF∑g+ 1 Double-Minimum State of the H2 Molecule,” J. Chem. Phys. 87, 6908–6914 (1987).
[CrossRef]

Shibuya, K.

K. Shibuya, F. Stuhl, “Fluorescence Lifetime and Collisional Quenching of the Predissociative NO B2Π(v′ = 7) State,” Chem. Phys. 79, 367–381 (1983).
[CrossRef]

Srinivasan, T.

T. Srinivasan, H. Egger, H. Pummer, C. K. Rhodes, “Generation of Extreme Ultraviolet Radiation at 79 nm by Sum Frequency Mixing,” IEEE J. Quantum Electron. QE-19, 1270–1276 (1983).
[CrossRef]

Stuhl, F.

K. Shibuya, F. Stuhl, “Fluorescence Lifetime and Collisional Quenching of the Predissociative NO B2Π(v′ = 7) State,” Chem. Phys. 79, 367–381 (1983).
[CrossRef]

Valentini, J. J.

W. Hack, R. K. Sander, J. J. Valentini, N. S. Nogar, “Dynamics of 14N16O and 15N18O Excited with an ArF-Exciplex Laser at 193 nm,” Mol. Phys. 56, 977–987 (1985).
[CrossRef]

Zacharias, H.

H. Rottke, H. Zacharias, “Photoionization of Single Rotational Levels in Excited B2Π, C2Π, and D2∑+ States of 14N16O,” J. Chem. Phys. 83, 4831–4844 (1985).
[CrossRef]

Aeronom. Acta A (1)

M. Nicolet, S. Cieslik, R. Kennes, “Rotational Structure and Absorption Cross Sections from 300 K to 190 K of the Schumann-Runge Bands,” Aeronom. Acta A 318 (1987).

Can. J. Phys. (1)

I. Dabrowski, “The Lyman and Werner Bands of H2,” Can. J. Phys. 62, 1639–1664 (1984).
[CrossRef]

Chem. Phys. (1)

K. Shibuya, F. Stuhl, “Fluorescence Lifetime and Collisional Quenching of the Predissociative NO B2Π(v′ = 7) State,” Chem. Phys. 79, 367–381 (1983).
[CrossRef]

IEEE J. Quantum Electron. (2)

T. Srinivasan, H. Egger, H. Pummer, C. K. Rhodes, “Generation of Extreme Ultraviolet Radiation at 79 nm by Sum Frequency Mixing,” IEEE J. Quantum Electron. QE-19, 1270–1276 (1983).
[CrossRef]

W. K. Bischel, J. Bokor, D. J. Kligler, C. K. Rhodes, “Nonlinear Optical Processes in Atoms and Molecules Using Rare-Gas Halide Lasers,” IEEE J. Quantum Electron. QE-15, 380–392 (1979).
[CrossRef]

J. Chem. Phys. (3)

P. Senn, K. Dressler, “Spectroscopic Identification of Rovibronic Levels Lying Above the Potential Barrier of the EF∑g+ 1 Double-Minimum State of the H2 Molecule,” J. Chem. Phys. 87, 6908–6914 (1987).
[CrossRef]

R. Gallusser, K. Dressler, “Multistate Vibronic Coupling Between the Excited 2Π States of the NO Molecule,” J. Chem. Phys. 76, 4311–4327 (1982).
[CrossRef]

H. Rottke, H. Zacharias, “Photoionization of Single Rotational Levels in Excited B2Π, C2Π, and D2∑+ States of 14N16O,” J. Chem. Phys. 83, 4831–4844 (1985).
[CrossRef]

Mol. Phys. (1)

W. Hack, R. K. Sander, J. J. Valentini, N. S. Nogar, “Dynamics of 14N16O and 15N18O Excited with an ArF-Exciplex Laser at 193 nm,” Mol. Phys. 56, 977–987 (1985).
[CrossRef]

Phys. Rev. A (1)

D. J. Kligler, J. Bokor, C. K. Rhodes, “Collisional and Radiative Properties of the H2 E,F∑g+ 1 State,” Phys. Rev. A 21, 607–617 (1980).
[CrossRef]

Phys. Rev. Lett. (1)

D. J. Kligler, C. K. Rhodes, “Observation of Two-Photon Excitation of the H2E,F1∑ State,” Phys. Rev. Lett. 40, 309–313 (1978).
[CrossRef]

Other (4)

S. Gerstenkorn, P. Luc, Atlas du spectre d’absorption de la molecule d’iode (Editions du CNRS, Paris, 1978).

H. Okabe, Photochemistry of Small Molecules (Wiley-Interscience, New York, 1978), p. 39.

K. P. Huber, G. Herzberg, Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979), pp. 474–480.

W. Demtroder, Laser Spectroscopy (Springer-Verlag, Berlin, 1982), pp. 105–111.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Apparatus diagram for the locked amplifier mode. For the amplified oscillator mode, 90 mTorr of Ar was added.

Fig. 2
Fig. 2

The 1 + 1 REMPI spectrum of NO using a Nd:YAG pumped dye laser. Laser bandwidth, as determined from the linewidths, was 1.3 cm−1.

Fig. 3
Fig. 3

The 1 + 1 REMPI spectrum of NO using a tunable ArF laser in the amplified oscillator mode. In this mode, the ion signal can be normalized by the pulse energy; the vertical axis is ions detected per joule of pulse energy. Measured linewidth is 0.24 ± 0.05 cm−1 (7.2 ± 1.5 GHz). Accounting for the Doppler broadening, the laser bandwidth is 0.21 ± 0.06 cm−1 (6.2 ± 1.8 GHz).

Fig. 4
Fig. 4

The 1 + 1 REMPI spectrum of NO using a tunable ArF laser in the locked amplifier mode. In this mode, the lack of information on locking efficiency precludes pulse energy normalization. The scale on the horizontal axis is different from that of Fig. 3. The measured linewidth and, therefore, the laser bandwidth are the same as that of Fig. 3.

Fig. 5
Fig. 5

The SR21 33.5 line of the γ(3,0) band.

Tables (1)

Tables Icon

Table I Absorption Lines Observed In the Tuning Range of the ArF Laser

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

N E = 1 ( 1.25 + 10 12 ) g e K s ion s E ,
N = s ion C g e ,
σ ( J , J ) = π e 2 m e c f ( v , v ) S ( J , J ) 2 J + 1 = 1.7 × 10 - 6 cm 2 Hz .
σ ν ( J , J ) = 2 ln 2 π 1 Δ ν σ ( J , J )
σ ν ( 27.5 , 28.5 ) = 2.2 × 10 - 16 cm 2 , σ ν Φ = 6 × 10 8 s - 1 ,
A = 3 × 10 - 6 s - 1 , k Q ( NO ) = 7 × 10 5 s - 1 , σ ion Φ 2 × 10 5 s - 1 ,
Δ ν s = ( Δ ν p ) 2 + ( Δ ν l ) 2 1 + S ,
S σ ν Φ A + k Q ( NO ) + σ ion Φ = 150.
Δ ν = ( Δ ν D ) 2 + ( Δ ν L ) 2 .

Metrics