Abstract

We examine, both theoretically and experimentally, the temperature dependence of the nonlinear optical response of fluorescein doped boric-acid glass. The third-order nonlinear susceptibility is increased by an order of magnitude over its room temperature value to greater than 10 esu by cooling the sample to a temperature below 200 K.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. A. Shankoff, “Recording Holograms in Luminescent Materials,” Appl. Opt. 8, 2282–2284 (1969).
    [CrossRef] [PubMed]
  2. Y. Silberberg, I. Bar-Joseph, “Low Power Phase Conjugation in Thin Films of Saturable Absorbers,” Opt. Commun. 39, 265–268 (1981); “Transient Effects in Degenerate Four-Wave Mixing in Saturable Absorbers,” IEEE J. Quantum Electron. QE-17, 1967–1970 (1981).
    [CrossRef]
  3. T. Todorov, L. Nikolova, N. Tomova, V. Dragostina, “Photochromism and Dynamic Holographic Recording in a Rigid Solution of Fluorescein,” Opt. Quantum Electron. 13, 209–215 (1981).
    [CrossRef]
  4. I. Bar-Joseph, Y. Silberberg, “Real-time Holography Through Triplet State Absorption in Organic Dyes,” Opt. Commun. 41, 455–458 (1982).
    [CrossRef]
  5. M. A. Kramer, W. R. Tompkin, R. W. Boyd, “Nonlinear Optical Properties of Fluorescein in Boric-Acid Glass,” J. Lumin. 31/32, 789–791 (1984).
    [CrossRef]
  6. H. Fugiwara, K. Nakagawa, “Phase Conjugation in Fluorescein Film by Degenerate Four Wave Mixing,” Opt. Commun. 55, 386–390 (1985); “Transient Phase Conjugation by Degenerate Four-Wave Mixing in Saturable Dyes,” J. Opt. Soc. Am. B 4, 121–128 (1987).
    [CrossRef]
  7. W. R. Tompkin, R. W. Boyd, D. W. Hall, P. A. Tick, “Nonlinear-Optical Properties of Lead-Tin Fluorophosphate Glass Containing Acridine Dyes,” J. Opt. Soc. Am. B 4, 1030–1034 (1987).
    [CrossRef]
  8. M. Montecchi, M. Settembre, M. Romagnoli, “Optically Induced Birefringence and Dichroism in Rigidly Held Dye Molecules,” J. Opt. Soc. Am. B 5, 2357–2362 (1988).
    [CrossRef]
  9. S. Speiser, V. H. Houlding, J. T. Yardley, “Nonlinear Optical Properties of Organic Dye Dimer-Monomer Systems,” Appl. Phys. B 45, 237–243 (1988).
    [CrossRef]
  10. S. A. Boothroyd, J. Chrostowski, M. S. O’Sullivan, “Two-Wave Mixing by Phase and Absorption Gratings in Saturable Absorbers,” J. Opt. Soc. Am. B 6, 766–771 (1989).
    [CrossRef]
  11. S. A. Boothroyd, J. Chrostowski, M. S. O’Sullivan, “Determination of the Phase of the Complex Nonlinear Refractive Index by Transient Two-Wave Mixing in Saturable Absorbers,” Opt. Lett. 14, 945–948 (1989).
    [CrossRef]
  12. G. R. Kumar, B. P. Singh, K. K. Sharma, “Optical Phase Conjugation in Rhodamine-6G Doped Boric Acid Glass,” Opt. Commun. 73, 81–84 (1989).
    [CrossRef]
  13. M. A. Kramer, W. R. Tompkin, R. W. Boyd, “Nonlinear-Optical Interactions in Fluorescein-Doped Boric Acid Glass,” Phys. Rev. A 34, 2026–2031 (1986).
    [CrossRef] [PubMed]
  14. A. Jablonski, “Über den mechanismus der Photolumineszenz von Farbstoffphosphoren,” Z. Physik 94, 38–46 (1935).
    [CrossRef]
  15. C. A. Parker, Photoluminescence of Solutions (Elsevier, Amsterdam, 1968), p. 69.
  16. G. A. Ketsle, L. V. Levshin, Yu. A. Soinikov, “Effect of a Heavy Atom on the Thermostimulated Delayed Fluorescence and Phosphorescence of Xanthene Dyes,” Opt. Spektrosk. 52, 657–662 (1982) [Opt. Spectrosc. (USSR) 52, 392–395 (1982)].
  17. V. V. Bryukhanov, L. V. Levshin, Zh. K. Smagulov, Z. M. Muldakhmetov, “Effect of External Heavy Atoms on Thermally Stimulated Delayed Fluorescence of Acridine Dyes in Polyvinyl Alcohol Matrices,” Opt. Spekrosk. 59, 896–899 (1985) [Opt. Spectrosc. (USSR) 59, 540–542 (1985)].
  18. M. Hercher, “An Analysis of Saturable Absorbers,” Appl. Opt. 6, 947–954 (1967).
    [CrossRef] [PubMed]
  19. G. N. Lewis, D. Lipkin, T. T. Magel, “Reversible Photochemical Processes in Rigid Media. A Study of the Phosphorescent State,” J. Am. Chem. Soc. 63, 3005–3018 (1941).
    [CrossRef]
  20. M. Frackowiak, J. Heldt, “Investigation of an Organophosphor in the Preexcited State,” Acta Phys. Pol. 18, 93–106 (1959).
  21. T. Tomashek, “Zur Kenntnis der Borsäurephosphore,” Ann. Phys. (Leipzig) 67, 622–646 (1922).
  22. D. W. Greggs, H. G. Drickamer, “Effect of Pressure on the Optical Properties of Organic Phosphors,” J. Chem. Phys. 35, 1780–1788 (1960).
    [CrossRef]
  23. V. A. Pilipovitch, B. T. Sveshnikov, “O Zakhone Zatukhaniya Dlitil’nogo Srecheniya Organolyuminoforov,” Opt. Spektrosk. 5, 290–296 (1958).
  24. R. L. Abrams, R. C. Lind, “Degenerate Four-Wave Mixing in Absorbing Media,” Opt. Lett. 2, 94–99 (1978); “Degenerate Four-Wave Mixing in Absorbing Media: Errata,” Opt. lett. 3, 205 (1978).
    [CrossRef] [PubMed]

1989 (3)

S. A. Boothroyd, J. Chrostowski, M. S. O’Sullivan, “Determination of the Phase of the Complex Nonlinear Refractive Index by Transient Two-Wave Mixing in Saturable Absorbers,” Opt. Lett. 14, 945–948 (1989).
[CrossRef]

G. R. Kumar, B. P. Singh, K. K. Sharma, “Optical Phase Conjugation in Rhodamine-6G Doped Boric Acid Glass,” Opt. Commun. 73, 81–84 (1989).
[CrossRef]

S. A. Boothroyd, J. Chrostowski, M. S. O’Sullivan, “Two-Wave Mixing by Phase and Absorption Gratings in Saturable Absorbers,” J. Opt. Soc. Am. B 6, 766–771 (1989).
[CrossRef]

1988 (2)

S. Speiser, V. H. Houlding, J. T. Yardley, “Nonlinear Optical Properties of Organic Dye Dimer-Monomer Systems,” Appl. Phys. B 45, 237–243 (1988).
[CrossRef]

M. Montecchi, M. Settembre, M. Romagnoli, “Optically Induced Birefringence and Dichroism in Rigidly Held Dye Molecules,” J. Opt. Soc. Am. B 5, 2357–2362 (1988).
[CrossRef]

1987 (1)

1986 (1)

M. A. Kramer, W. R. Tompkin, R. W. Boyd, “Nonlinear-Optical Interactions in Fluorescein-Doped Boric Acid Glass,” Phys. Rev. A 34, 2026–2031 (1986).
[CrossRef] [PubMed]

1985 (2)

H. Fugiwara, K. Nakagawa, “Phase Conjugation in Fluorescein Film by Degenerate Four Wave Mixing,” Opt. Commun. 55, 386–390 (1985); “Transient Phase Conjugation by Degenerate Four-Wave Mixing in Saturable Dyes,” J. Opt. Soc. Am. B 4, 121–128 (1987).
[CrossRef]

V. V. Bryukhanov, L. V. Levshin, Zh. K. Smagulov, Z. M. Muldakhmetov, “Effect of External Heavy Atoms on Thermally Stimulated Delayed Fluorescence of Acridine Dyes in Polyvinyl Alcohol Matrices,” Opt. Spekrosk. 59, 896–899 (1985) [Opt. Spectrosc. (USSR) 59, 540–542 (1985)].

1984 (1)

M. A. Kramer, W. R. Tompkin, R. W. Boyd, “Nonlinear Optical Properties of Fluorescein in Boric-Acid Glass,” J. Lumin. 31/32, 789–791 (1984).
[CrossRef]

1982 (2)

I. Bar-Joseph, Y. Silberberg, “Real-time Holography Through Triplet State Absorption in Organic Dyes,” Opt. Commun. 41, 455–458 (1982).
[CrossRef]

G. A. Ketsle, L. V. Levshin, Yu. A. Soinikov, “Effect of a Heavy Atom on the Thermostimulated Delayed Fluorescence and Phosphorescence of Xanthene Dyes,” Opt. Spektrosk. 52, 657–662 (1982) [Opt. Spectrosc. (USSR) 52, 392–395 (1982)].

1981 (2)

Y. Silberberg, I. Bar-Joseph, “Low Power Phase Conjugation in Thin Films of Saturable Absorbers,” Opt. Commun. 39, 265–268 (1981); “Transient Effects in Degenerate Four-Wave Mixing in Saturable Absorbers,” IEEE J. Quantum Electron. QE-17, 1967–1970 (1981).
[CrossRef]

T. Todorov, L. Nikolova, N. Tomova, V. Dragostina, “Photochromism and Dynamic Holographic Recording in a Rigid Solution of Fluorescein,” Opt. Quantum Electron. 13, 209–215 (1981).
[CrossRef]

1978 (1)

1969 (1)

1967 (1)

1960 (1)

D. W. Greggs, H. G. Drickamer, “Effect of Pressure on the Optical Properties of Organic Phosphors,” J. Chem. Phys. 35, 1780–1788 (1960).
[CrossRef]

1959 (1)

M. Frackowiak, J. Heldt, “Investigation of an Organophosphor in the Preexcited State,” Acta Phys. Pol. 18, 93–106 (1959).

1958 (1)

V. A. Pilipovitch, B. T. Sveshnikov, “O Zakhone Zatukhaniya Dlitil’nogo Srecheniya Organolyuminoforov,” Opt. Spektrosk. 5, 290–296 (1958).

1941 (1)

G. N. Lewis, D. Lipkin, T. T. Magel, “Reversible Photochemical Processes in Rigid Media. A Study of the Phosphorescent State,” J. Am. Chem. Soc. 63, 3005–3018 (1941).
[CrossRef]

1935 (1)

A. Jablonski, “Über den mechanismus der Photolumineszenz von Farbstoffphosphoren,” Z. Physik 94, 38–46 (1935).
[CrossRef]

1922 (1)

T. Tomashek, “Zur Kenntnis der Borsäurephosphore,” Ann. Phys. (Leipzig) 67, 622–646 (1922).

Abrams, R. L.

Bar-Joseph, I.

I. Bar-Joseph, Y. Silberberg, “Real-time Holography Through Triplet State Absorption in Organic Dyes,” Opt. Commun. 41, 455–458 (1982).
[CrossRef]

Y. Silberberg, I. Bar-Joseph, “Low Power Phase Conjugation in Thin Films of Saturable Absorbers,” Opt. Commun. 39, 265–268 (1981); “Transient Effects in Degenerate Four-Wave Mixing in Saturable Absorbers,” IEEE J. Quantum Electron. QE-17, 1967–1970 (1981).
[CrossRef]

Boothroyd, S. A.

S. A. Boothroyd, J. Chrostowski, M. S. O’Sullivan, “Two-Wave Mixing by Phase and Absorption Gratings in Saturable Absorbers,” J. Opt. Soc. Am. B 6, 766–771 (1989).
[CrossRef]

S. A. Boothroyd, J. Chrostowski, M. S. O’Sullivan, “Determination of the Phase of the Complex Nonlinear Refractive Index by Transient Two-Wave Mixing in Saturable Absorbers,” Opt. Lett. 14, 945–948 (1989).
[CrossRef]

Boyd, R. W.

W. R. Tompkin, R. W. Boyd, D. W. Hall, P. A. Tick, “Nonlinear-Optical Properties of Lead-Tin Fluorophosphate Glass Containing Acridine Dyes,” J. Opt. Soc. Am. B 4, 1030–1034 (1987).
[CrossRef]

M. A. Kramer, W. R. Tompkin, R. W. Boyd, “Nonlinear-Optical Interactions in Fluorescein-Doped Boric Acid Glass,” Phys. Rev. A 34, 2026–2031 (1986).
[CrossRef] [PubMed]

M. A. Kramer, W. R. Tompkin, R. W. Boyd, “Nonlinear Optical Properties of Fluorescein in Boric-Acid Glass,” J. Lumin. 31/32, 789–791 (1984).
[CrossRef]

Bryukhanov, V. V.

V. V. Bryukhanov, L. V. Levshin, Zh. K. Smagulov, Z. M. Muldakhmetov, “Effect of External Heavy Atoms on Thermally Stimulated Delayed Fluorescence of Acridine Dyes in Polyvinyl Alcohol Matrices,” Opt. Spekrosk. 59, 896–899 (1985) [Opt. Spectrosc. (USSR) 59, 540–542 (1985)].

Chrostowski, J.

S. A. Boothroyd, J. Chrostowski, M. S. O’Sullivan, “Determination of the Phase of the Complex Nonlinear Refractive Index by Transient Two-Wave Mixing in Saturable Absorbers,” Opt. Lett. 14, 945–948 (1989).
[CrossRef]

S. A. Boothroyd, J. Chrostowski, M. S. O’Sullivan, “Two-Wave Mixing by Phase and Absorption Gratings in Saturable Absorbers,” J. Opt. Soc. Am. B 6, 766–771 (1989).
[CrossRef]

Dragostina, V.

T. Todorov, L. Nikolova, N. Tomova, V. Dragostina, “Photochromism and Dynamic Holographic Recording in a Rigid Solution of Fluorescein,” Opt. Quantum Electron. 13, 209–215 (1981).
[CrossRef]

Drickamer, H. G.

D. W. Greggs, H. G. Drickamer, “Effect of Pressure on the Optical Properties of Organic Phosphors,” J. Chem. Phys. 35, 1780–1788 (1960).
[CrossRef]

Frackowiak, M.

M. Frackowiak, J. Heldt, “Investigation of an Organophosphor in the Preexcited State,” Acta Phys. Pol. 18, 93–106 (1959).

Fugiwara, H.

H. Fugiwara, K. Nakagawa, “Phase Conjugation in Fluorescein Film by Degenerate Four Wave Mixing,” Opt. Commun. 55, 386–390 (1985); “Transient Phase Conjugation by Degenerate Four-Wave Mixing in Saturable Dyes,” J. Opt. Soc. Am. B 4, 121–128 (1987).
[CrossRef]

Greggs, D. W.

D. W. Greggs, H. G. Drickamer, “Effect of Pressure on the Optical Properties of Organic Phosphors,” J. Chem. Phys. 35, 1780–1788 (1960).
[CrossRef]

Hall, D. W.

Heldt, J.

M. Frackowiak, J. Heldt, “Investigation of an Organophosphor in the Preexcited State,” Acta Phys. Pol. 18, 93–106 (1959).

Hercher, M.

Houlding, V. H.

S. Speiser, V. H. Houlding, J. T. Yardley, “Nonlinear Optical Properties of Organic Dye Dimer-Monomer Systems,” Appl. Phys. B 45, 237–243 (1988).
[CrossRef]

Jablonski, A.

A. Jablonski, “Über den mechanismus der Photolumineszenz von Farbstoffphosphoren,” Z. Physik 94, 38–46 (1935).
[CrossRef]

Ketsle, G. A.

G. A. Ketsle, L. V. Levshin, Yu. A. Soinikov, “Effect of a Heavy Atom on the Thermostimulated Delayed Fluorescence and Phosphorescence of Xanthene Dyes,” Opt. Spektrosk. 52, 657–662 (1982) [Opt. Spectrosc. (USSR) 52, 392–395 (1982)].

Kramer, M. A.

M. A. Kramer, W. R. Tompkin, R. W. Boyd, “Nonlinear-Optical Interactions in Fluorescein-Doped Boric Acid Glass,” Phys. Rev. A 34, 2026–2031 (1986).
[CrossRef] [PubMed]

M. A. Kramer, W. R. Tompkin, R. W. Boyd, “Nonlinear Optical Properties of Fluorescein in Boric-Acid Glass,” J. Lumin. 31/32, 789–791 (1984).
[CrossRef]

Kumar, G. R.

G. R. Kumar, B. P. Singh, K. K. Sharma, “Optical Phase Conjugation in Rhodamine-6G Doped Boric Acid Glass,” Opt. Commun. 73, 81–84 (1989).
[CrossRef]

Levshin, L. V.

V. V. Bryukhanov, L. V. Levshin, Zh. K. Smagulov, Z. M. Muldakhmetov, “Effect of External Heavy Atoms on Thermally Stimulated Delayed Fluorescence of Acridine Dyes in Polyvinyl Alcohol Matrices,” Opt. Spekrosk. 59, 896–899 (1985) [Opt. Spectrosc. (USSR) 59, 540–542 (1985)].

G. A. Ketsle, L. V. Levshin, Yu. A. Soinikov, “Effect of a Heavy Atom on the Thermostimulated Delayed Fluorescence and Phosphorescence of Xanthene Dyes,” Opt. Spektrosk. 52, 657–662 (1982) [Opt. Spectrosc. (USSR) 52, 392–395 (1982)].

Lewis, G. N.

G. N. Lewis, D. Lipkin, T. T. Magel, “Reversible Photochemical Processes in Rigid Media. A Study of the Phosphorescent State,” J. Am. Chem. Soc. 63, 3005–3018 (1941).
[CrossRef]

Lind, R. C.

Lipkin, D.

G. N. Lewis, D. Lipkin, T. T. Magel, “Reversible Photochemical Processes in Rigid Media. A Study of the Phosphorescent State,” J. Am. Chem. Soc. 63, 3005–3018 (1941).
[CrossRef]

Magel, T. T.

G. N. Lewis, D. Lipkin, T. T. Magel, “Reversible Photochemical Processes in Rigid Media. A Study of the Phosphorescent State,” J. Am. Chem. Soc. 63, 3005–3018 (1941).
[CrossRef]

Montecchi, M.

Muldakhmetov, Z. M.

V. V. Bryukhanov, L. V. Levshin, Zh. K. Smagulov, Z. M. Muldakhmetov, “Effect of External Heavy Atoms on Thermally Stimulated Delayed Fluorescence of Acridine Dyes in Polyvinyl Alcohol Matrices,” Opt. Spekrosk. 59, 896–899 (1985) [Opt. Spectrosc. (USSR) 59, 540–542 (1985)].

Nakagawa, K.

H. Fugiwara, K. Nakagawa, “Phase Conjugation in Fluorescein Film by Degenerate Four Wave Mixing,” Opt. Commun. 55, 386–390 (1985); “Transient Phase Conjugation by Degenerate Four-Wave Mixing in Saturable Dyes,” J. Opt. Soc. Am. B 4, 121–128 (1987).
[CrossRef]

Nikolova, L.

T. Todorov, L. Nikolova, N. Tomova, V. Dragostina, “Photochromism and Dynamic Holographic Recording in a Rigid Solution of Fluorescein,” Opt. Quantum Electron. 13, 209–215 (1981).
[CrossRef]

O’Sullivan, M. S.

S. A. Boothroyd, J. Chrostowski, M. S. O’Sullivan, “Determination of the Phase of the Complex Nonlinear Refractive Index by Transient Two-Wave Mixing in Saturable Absorbers,” Opt. Lett. 14, 945–948 (1989).
[CrossRef]

S. A. Boothroyd, J. Chrostowski, M. S. O’Sullivan, “Two-Wave Mixing by Phase and Absorption Gratings in Saturable Absorbers,” J. Opt. Soc. Am. B 6, 766–771 (1989).
[CrossRef]

Parker, C. A.

C. A. Parker, Photoluminescence of Solutions (Elsevier, Amsterdam, 1968), p. 69.

Pilipovitch, V. A.

V. A. Pilipovitch, B. T. Sveshnikov, “O Zakhone Zatukhaniya Dlitil’nogo Srecheniya Organolyuminoforov,” Opt. Spektrosk. 5, 290–296 (1958).

Romagnoli, M.

Settembre, M.

Shankoff, T. A.

Sharma, K. K.

G. R. Kumar, B. P. Singh, K. K. Sharma, “Optical Phase Conjugation in Rhodamine-6G Doped Boric Acid Glass,” Opt. Commun. 73, 81–84 (1989).
[CrossRef]

Silberberg, Y.

I. Bar-Joseph, Y. Silberberg, “Real-time Holography Through Triplet State Absorption in Organic Dyes,” Opt. Commun. 41, 455–458 (1982).
[CrossRef]

Y. Silberberg, I. Bar-Joseph, “Low Power Phase Conjugation in Thin Films of Saturable Absorbers,” Opt. Commun. 39, 265–268 (1981); “Transient Effects in Degenerate Four-Wave Mixing in Saturable Absorbers,” IEEE J. Quantum Electron. QE-17, 1967–1970 (1981).
[CrossRef]

Singh, B. P.

G. R. Kumar, B. P. Singh, K. K. Sharma, “Optical Phase Conjugation in Rhodamine-6G Doped Boric Acid Glass,” Opt. Commun. 73, 81–84 (1989).
[CrossRef]

Smagulov, Zh. K.

V. V. Bryukhanov, L. V. Levshin, Zh. K. Smagulov, Z. M. Muldakhmetov, “Effect of External Heavy Atoms on Thermally Stimulated Delayed Fluorescence of Acridine Dyes in Polyvinyl Alcohol Matrices,” Opt. Spekrosk. 59, 896–899 (1985) [Opt. Spectrosc. (USSR) 59, 540–542 (1985)].

Soinikov, Yu. A.

G. A. Ketsle, L. V. Levshin, Yu. A. Soinikov, “Effect of a Heavy Atom on the Thermostimulated Delayed Fluorescence and Phosphorescence of Xanthene Dyes,” Opt. Spektrosk. 52, 657–662 (1982) [Opt. Spectrosc. (USSR) 52, 392–395 (1982)].

Speiser, S.

S. Speiser, V. H. Houlding, J. T. Yardley, “Nonlinear Optical Properties of Organic Dye Dimer-Monomer Systems,” Appl. Phys. B 45, 237–243 (1988).
[CrossRef]

Sveshnikov, B. T.

V. A. Pilipovitch, B. T. Sveshnikov, “O Zakhone Zatukhaniya Dlitil’nogo Srecheniya Organolyuminoforov,” Opt. Spektrosk. 5, 290–296 (1958).

Tick, P. A.

Todorov, T.

T. Todorov, L. Nikolova, N. Tomova, V. Dragostina, “Photochromism and Dynamic Holographic Recording in a Rigid Solution of Fluorescein,” Opt. Quantum Electron. 13, 209–215 (1981).
[CrossRef]

Tomashek, T.

T. Tomashek, “Zur Kenntnis der Borsäurephosphore,” Ann. Phys. (Leipzig) 67, 622–646 (1922).

Tomova, N.

T. Todorov, L. Nikolova, N. Tomova, V. Dragostina, “Photochromism and Dynamic Holographic Recording in a Rigid Solution of Fluorescein,” Opt. Quantum Electron. 13, 209–215 (1981).
[CrossRef]

Tompkin, W. R.

W. R. Tompkin, R. W. Boyd, D. W. Hall, P. A. Tick, “Nonlinear-Optical Properties of Lead-Tin Fluorophosphate Glass Containing Acridine Dyes,” J. Opt. Soc. Am. B 4, 1030–1034 (1987).
[CrossRef]

M. A. Kramer, W. R. Tompkin, R. W. Boyd, “Nonlinear-Optical Interactions in Fluorescein-Doped Boric Acid Glass,” Phys. Rev. A 34, 2026–2031 (1986).
[CrossRef] [PubMed]

M. A. Kramer, W. R. Tompkin, R. W. Boyd, “Nonlinear Optical Properties of Fluorescein in Boric-Acid Glass,” J. Lumin. 31/32, 789–791 (1984).
[CrossRef]

Yardley, J. T.

S. Speiser, V. H. Houlding, J. T. Yardley, “Nonlinear Optical Properties of Organic Dye Dimer-Monomer Systems,” Appl. Phys. B 45, 237–243 (1988).
[CrossRef]

Acta Phys. Pol. (1)

M. Frackowiak, J. Heldt, “Investigation of an Organophosphor in the Preexcited State,” Acta Phys. Pol. 18, 93–106 (1959).

Ann. Phys. (Leipzig) (1)

T. Tomashek, “Zur Kenntnis der Borsäurephosphore,” Ann. Phys. (Leipzig) 67, 622–646 (1922).

Appl. Opt. (2)

Appl. Phys. B (1)

S. Speiser, V. H. Houlding, J. T. Yardley, “Nonlinear Optical Properties of Organic Dye Dimer-Monomer Systems,” Appl. Phys. B 45, 237–243 (1988).
[CrossRef]

J. Am. Chem. Soc. (1)

G. N. Lewis, D. Lipkin, T. T. Magel, “Reversible Photochemical Processes in Rigid Media. A Study of the Phosphorescent State,” J. Am. Chem. Soc. 63, 3005–3018 (1941).
[CrossRef]

J. Chem. Phys. (1)

D. W. Greggs, H. G. Drickamer, “Effect of Pressure on the Optical Properties of Organic Phosphors,” J. Chem. Phys. 35, 1780–1788 (1960).
[CrossRef]

J. Lumin. (1)

M. A. Kramer, W. R. Tompkin, R. W. Boyd, “Nonlinear Optical Properties of Fluorescein in Boric-Acid Glass,” J. Lumin. 31/32, 789–791 (1984).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Commun. (4)

H. Fugiwara, K. Nakagawa, “Phase Conjugation in Fluorescein Film by Degenerate Four Wave Mixing,” Opt. Commun. 55, 386–390 (1985); “Transient Phase Conjugation by Degenerate Four-Wave Mixing in Saturable Dyes,” J. Opt. Soc. Am. B 4, 121–128 (1987).
[CrossRef]

I. Bar-Joseph, Y. Silberberg, “Real-time Holography Through Triplet State Absorption in Organic Dyes,” Opt. Commun. 41, 455–458 (1982).
[CrossRef]

G. R. Kumar, B. P. Singh, K. K. Sharma, “Optical Phase Conjugation in Rhodamine-6G Doped Boric Acid Glass,” Opt. Commun. 73, 81–84 (1989).
[CrossRef]

Y. Silberberg, I. Bar-Joseph, “Low Power Phase Conjugation in Thin Films of Saturable Absorbers,” Opt. Commun. 39, 265–268 (1981); “Transient Effects in Degenerate Four-Wave Mixing in Saturable Absorbers,” IEEE J. Quantum Electron. QE-17, 1967–1970 (1981).
[CrossRef]

Opt. Lett. (2)

S. A. Boothroyd, J. Chrostowski, M. S. O’Sullivan, “Determination of the Phase of the Complex Nonlinear Refractive Index by Transient Two-Wave Mixing in Saturable Absorbers,” Opt. Lett. 14, 945–948 (1989).
[CrossRef]

R. L. Abrams, R. C. Lind, “Degenerate Four-Wave Mixing in Absorbing Media,” Opt. Lett. 2, 94–99 (1978); “Degenerate Four-Wave Mixing in Absorbing Media: Errata,” Opt. lett. 3, 205 (1978).
[CrossRef] [PubMed]

Opt. Quantum Electron. (1)

T. Todorov, L. Nikolova, N. Tomova, V. Dragostina, “Photochromism and Dynamic Holographic Recording in a Rigid Solution of Fluorescein,” Opt. Quantum Electron. 13, 209–215 (1981).
[CrossRef]

Opt. Spekrosk. (1)

V. V. Bryukhanov, L. V. Levshin, Zh. K. Smagulov, Z. M. Muldakhmetov, “Effect of External Heavy Atoms on Thermally Stimulated Delayed Fluorescence of Acridine Dyes in Polyvinyl Alcohol Matrices,” Opt. Spekrosk. 59, 896–899 (1985) [Opt. Spectrosc. (USSR) 59, 540–542 (1985)].

Opt. Spektrosk. (2)

V. A. Pilipovitch, B. T. Sveshnikov, “O Zakhone Zatukhaniya Dlitil’nogo Srecheniya Organolyuminoforov,” Opt. Spektrosk. 5, 290–296 (1958).

G. A. Ketsle, L. V. Levshin, Yu. A. Soinikov, “Effect of a Heavy Atom on the Thermostimulated Delayed Fluorescence and Phosphorescence of Xanthene Dyes,” Opt. Spektrosk. 52, 657–662 (1982) [Opt. Spectrosc. (USSR) 52, 392–395 (1982)].

Phys. Rev. A (1)

M. A. Kramer, W. R. Tompkin, R. W. Boyd, “Nonlinear-Optical Interactions in Fluorescein-Doped Boric Acid Glass,” Phys. Rev. A 34, 2026–2031 (1986).
[CrossRef] [PubMed]

Z. Physik (1)

A. Jablonski, “Über den mechanismus der Photolumineszenz von Farbstoffphosphoren,” Z. Physik 94, 38–46 (1935).
[CrossRef]

Other (1)

C. A. Parker, Photoluminescence of Solutions (Elsevier, Amsterdam, 1968), p. 69.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Energy-level diagram showing the relevant optical interactions in fluorescein doped-boric-acid glass. Levels 0 and 1 represent singlet states, and levels 2 and 3 represent triplet states. Due to its long luminescent lifetime, the lowest lying triplet state, level 2, acts as a trap level. At room temperature, the principal relaxation route out of level 2 is delayed fluorescence; that is, thermally excited transfer from level 2 to level 1 is followed by fluorescence decay back to the ground state.

Fig. 2
Fig. 2

Luminescence spectra of fluorescein doped boric-acid glass at 100 and 290 K. The contributions due to phosphorescence and to fluorescence are separated at 100 K. The sample was excited by an argon ion laser operating at 457.9 nm.

Fig. 3
Fig. 3

Transmission of fluorescein doped boric-acid glass as a function of laser intensity at wavelength 457.9 nm for three temperatures. The data points are the measured values and the solid lines are theoretical predictions using the following parameters: α0 = 2.67, αe = 1.14, Is(200 K) = 2 mW/cm2, Is(290 K) = 23mW/cm2, and Is(330 K) = 160 mW/cm2.

Fig. 4
Fig. 4

Modulus of the complex third-order nonlinear susceptibility |χ(3)| plotted as a function of temperature. The data points are the measured values as determined by phase conjugation experiments at 457.9 nm, and the solid line is a theoretical prediction using Eq. (6b) with |χ(3)(290 K)| = 1.4 esu. In these experiments, the laser intensity was kept below the saturation intensity.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

χ ( 3 ) = n o 2 c 2 α o 24 π 2 ω I s ( δ - i )
P ˙ 0 = R o ( P 1 - P 0 ) + A 10 P 1 + A 20 P 2 , P ˙ 1 = - R o ( P 1 - P 0 ) - A 10 P 1 - A 12 P 1 + f A 21 P 2 , P ˙ 2 = A 12 P 1 - A 20 P 2 - f A 21 P 2 + R e ( P 3 - P 2 ) + A 32 P 3 , P ˙ 3 = - R e ( P 3 - P 2 ) - A 32 P 3
P 0 s s = ( A 10 + R 0 ) ( f A 21 + A 20 ) / A 12 + A 20 ( 2 R 0 + A 10 ) ( f A 21 + A 20 ) / A 12 + ( A 20 + R 0 ) + R 0 R e / ( R e + A 32 ) , P 1 s s = [ ( f A 21 + A 20 ) / A 12 ] P 2 s s , P 2 s s = R o [ 2 R o + A 10 ) ( f A 21 + A 20 ) / A 12 + ( A 20 + R o ) + R o R e / ( R e + A 32 ) ] , P 3 s s = R e R e + A 32 P 2 s s .
τ = [ A 10 A 12 ( f A 21 + A 20 ) + A 20 ] - 1
A 10 A 20 A 12 ( f A 21 + A 20 ) = 4.75.
I s ( 290 K ) I s ( T ) = τ ( T ) τ ( 290 K ) = ( A 10 / A 12 ) ( f ( 290 K ) A 21 + A 20 ) + A 20 ( A 10 / A 12 ) ( f ( T ) A 21 + A 20 ) + A 20 ,
I s ( 290 K ) I s ( T ) = τ ( T ) τ ( 290 K ) = [ 0.08 + ( 5 × 10 6 ) exp ( - 4500 K / T ) ] - 1 .
α TOT s s = N ( σ o P o s s + σ e P 2 s s )
= ( N σ e ) + N 1 + I / I s ( σ o - σ e ) ,
d I d z = - α TOT s s I ,
R = κ sin ( ω ) 2 ω cos ( ω ) + ( α u s s + γ ) sin ( ω ) 2 ,
ω = κ 2 - ( α u s s + γ ) 2 ,
γ = N ( σ o - σ e ) 1 + 2 I / I s ( 1 + δ 2 ) ( 1 + 4 I / I s ) 3 / 2 ,
κ * = i N ( σ o - σ e ) ( 1 - i δ ) ( 1 + δ 2 ) 2 I / I s ( 1 + 4 I / I s ) 3 / 2 ,

Metrics