Abstract

We report the design and performance characteristics of a voltage feedback circuit which can rapidly compensate for the temperature-dependent shift of the excitonic peak energy positions in quantum confined Stark effect modulators. The energy position remains invariant over a temperature shift of 10°. The circuit is simple and can be operated with a single device or an array of modulators.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, C. A. Burrus, “Band-Edge Electroabsorption in the Quantum Well Structures: The Quantum Confined Stark Effect,” Phys. Rev. Lett. 53, 2173–2175 (1984).
    [CrossRef]
  2. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegman, T. H. Wood, C. A. Burrus, “Electric Field Dependence of Optical Absorption near the Bandgap of Quantum Well Structures,” Phys. Rev. B 32, 1043–1060 (1985).
    [CrossRef]
  3. T. H. Wood, C. A. Burrus, D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, “High-Speed Optical Modulation with GaAs/AlGaAs Quantum Wells in a p-i-n Diode Structure,” Appl. Phys. Lett. 44, 16–18 (1984).
    [CrossRef]
  4. J. Singh, S.-C. Hong, P. K. Bhattacharya, R. Sahai, C. Lastufka, H. Sobel, “System Requirements and Feasibility Studies for Optical Modulators Based on GaAs/AlGaAs Multiquantum Well Structures for Optical Processing,” J. Lightwave Technol. 6, 818–831 (1988).
    [CrossRef]
  5. Linear Data Book, National Semiconductor Corp. (1989), pp. 3–4 and 9–26.
  6. J. G. Graeme, G. E. Tobey, L. P. Huelsman, Operational Amplifiers Design and Applications (McGraw-Hill, New York, 1971), p. 256.

1988 (1)

J. Singh, S.-C. Hong, P. K. Bhattacharya, R. Sahai, C. Lastufka, H. Sobel, “System Requirements and Feasibility Studies for Optical Modulators Based on GaAs/AlGaAs Multiquantum Well Structures for Optical Processing,” J. Lightwave Technol. 6, 818–831 (1988).
[CrossRef]

1985 (1)

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegman, T. H. Wood, C. A. Burrus, “Electric Field Dependence of Optical Absorption near the Bandgap of Quantum Well Structures,” Phys. Rev. B 32, 1043–1060 (1985).
[CrossRef]

1984 (2)

T. H. Wood, C. A. Burrus, D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, “High-Speed Optical Modulation with GaAs/AlGaAs Quantum Wells in a p-i-n Diode Structure,” Appl. Phys. Lett. 44, 16–18 (1984).
[CrossRef]

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, C. A. Burrus, “Band-Edge Electroabsorption in the Quantum Well Structures: The Quantum Confined Stark Effect,” Phys. Rev. Lett. 53, 2173–2175 (1984).
[CrossRef]

Bhattacharya, P. K.

J. Singh, S.-C. Hong, P. K. Bhattacharya, R. Sahai, C. Lastufka, H. Sobel, “System Requirements and Feasibility Studies for Optical Modulators Based on GaAs/AlGaAs Multiquantum Well Structures for Optical Processing,” J. Lightwave Technol. 6, 818–831 (1988).
[CrossRef]

Burrus, C. A.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegman, T. H. Wood, C. A. Burrus, “Electric Field Dependence of Optical Absorption near the Bandgap of Quantum Well Structures,” Phys. Rev. B 32, 1043–1060 (1985).
[CrossRef]

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, C. A. Burrus, “Band-Edge Electroabsorption in the Quantum Well Structures: The Quantum Confined Stark Effect,” Phys. Rev. Lett. 53, 2173–2175 (1984).
[CrossRef]

T. H. Wood, C. A. Burrus, D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, “High-Speed Optical Modulation with GaAs/AlGaAs Quantum Wells in a p-i-n Diode Structure,” Appl. Phys. Lett. 44, 16–18 (1984).
[CrossRef]

Chemla, D. S.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegman, T. H. Wood, C. A. Burrus, “Electric Field Dependence of Optical Absorption near the Bandgap of Quantum Well Structures,” Phys. Rev. B 32, 1043–1060 (1985).
[CrossRef]

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, C. A. Burrus, “Band-Edge Electroabsorption in the Quantum Well Structures: The Quantum Confined Stark Effect,” Phys. Rev. Lett. 53, 2173–2175 (1984).
[CrossRef]

T. H. Wood, C. A. Burrus, D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, “High-Speed Optical Modulation with GaAs/AlGaAs Quantum Wells in a p-i-n Diode Structure,” Appl. Phys. Lett. 44, 16–18 (1984).
[CrossRef]

Damen, T. C.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegman, T. H. Wood, C. A. Burrus, “Electric Field Dependence of Optical Absorption near the Bandgap of Quantum Well Structures,” Phys. Rev. B 32, 1043–1060 (1985).
[CrossRef]

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, C. A. Burrus, “Band-Edge Electroabsorption in the Quantum Well Structures: The Quantum Confined Stark Effect,” Phys. Rev. Lett. 53, 2173–2175 (1984).
[CrossRef]

T. H. Wood, C. A. Burrus, D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, “High-Speed Optical Modulation with GaAs/AlGaAs Quantum Wells in a p-i-n Diode Structure,” Appl. Phys. Lett. 44, 16–18 (1984).
[CrossRef]

Gossard, A. C.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegman, T. H. Wood, C. A. Burrus, “Electric Field Dependence of Optical Absorption near the Bandgap of Quantum Well Structures,” Phys. Rev. B 32, 1043–1060 (1985).
[CrossRef]

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, C. A. Burrus, “Band-Edge Electroabsorption in the Quantum Well Structures: The Quantum Confined Stark Effect,” Phys. Rev. Lett. 53, 2173–2175 (1984).
[CrossRef]

T. H. Wood, C. A. Burrus, D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, “High-Speed Optical Modulation with GaAs/AlGaAs Quantum Wells in a p-i-n Diode Structure,” Appl. Phys. Lett. 44, 16–18 (1984).
[CrossRef]

Graeme, J. G.

J. G. Graeme, G. E. Tobey, L. P. Huelsman, Operational Amplifiers Design and Applications (McGraw-Hill, New York, 1971), p. 256.

Hong, S.-C.

J. Singh, S.-C. Hong, P. K. Bhattacharya, R. Sahai, C. Lastufka, H. Sobel, “System Requirements and Feasibility Studies for Optical Modulators Based on GaAs/AlGaAs Multiquantum Well Structures for Optical Processing,” J. Lightwave Technol. 6, 818–831 (1988).
[CrossRef]

Huelsman, L. P.

J. G. Graeme, G. E. Tobey, L. P. Huelsman, Operational Amplifiers Design and Applications (McGraw-Hill, New York, 1971), p. 256.

Lastufka, C.

J. Singh, S.-C. Hong, P. K. Bhattacharya, R. Sahai, C. Lastufka, H. Sobel, “System Requirements and Feasibility Studies for Optical Modulators Based on GaAs/AlGaAs Multiquantum Well Structures for Optical Processing,” J. Lightwave Technol. 6, 818–831 (1988).
[CrossRef]

Miller, D. A. B.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegman, T. H. Wood, C. A. Burrus, “Electric Field Dependence of Optical Absorption near the Bandgap of Quantum Well Structures,” Phys. Rev. B 32, 1043–1060 (1985).
[CrossRef]

T. H. Wood, C. A. Burrus, D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, “High-Speed Optical Modulation with GaAs/AlGaAs Quantum Wells in a p-i-n Diode Structure,” Appl. Phys. Lett. 44, 16–18 (1984).
[CrossRef]

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, C. A. Burrus, “Band-Edge Electroabsorption in the Quantum Well Structures: The Quantum Confined Stark Effect,” Phys. Rev. Lett. 53, 2173–2175 (1984).
[CrossRef]

Sahai, R.

J. Singh, S.-C. Hong, P. K. Bhattacharya, R. Sahai, C. Lastufka, H. Sobel, “System Requirements and Feasibility Studies for Optical Modulators Based on GaAs/AlGaAs Multiquantum Well Structures for Optical Processing,” J. Lightwave Technol. 6, 818–831 (1988).
[CrossRef]

Singh, J.

J. Singh, S.-C. Hong, P. K. Bhattacharya, R. Sahai, C. Lastufka, H. Sobel, “System Requirements and Feasibility Studies for Optical Modulators Based on GaAs/AlGaAs Multiquantum Well Structures for Optical Processing,” J. Lightwave Technol. 6, 818–831 (1988).
[CrossRef]

Sobel, H.

J. Singh, S.-C. Hong, P. K. Bhattacharya, R. Sahai, C. Lastufka, H. Sobel, “System Requirements and Feasibility Studies for Optical Modulators Based on GaAs/AlGaAs Multiquantum Well Structures for Optical Processing,” J. Lightwave Technol. 6, 818–831 (1988).
[CrossRef]

Tobey, G. E.

J. G. Graeme, G. E. Tobey, L. P. Huelsman, Operational Amplifiers Design and Applications (McGraw-Hill, New York, 1971), p. 256.

Wiegman, W.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegman, T. H. Wood, C. A. Burrus, “Electric Field Dependence of Optical Absorption near the Bandgap of Quantum Well Structures,” Phys. Rev. B 32, 1043–1060 (1985).
[CrossRef]

Wiegmann, W.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, C. A. Burrus, “Band-Edge Electroabsorption in the Quantum Well Structures: The Quantum Confined Stark Effect,” Phys. Rev. Lett. 53, 2173–2175 (1984).
[CrossRef]

T. H. Wood, C. A. Burrus, D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, “High-Speed Optical Modulation with GaAs/AlGaAs Quantum Wells in a p-i-n Diode Structure,” Appl. Phys. Lett. 44, 16–18 (1984).
[CrossRef]

Wood, T. H.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegman, T. H. Wood, C. A. Burrus, “Electric Field Dependence of Optical Absorption near the Bandgap of Quantum Well Structures,” Phys. Rev. B 32, 1043–1060 (1985).
[CrossRef]

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, C. A. Burrus, “Band-Edge Electroabsorption in the Quantum Well Structures: The Quantum Confined Stark Effect,” Phys. Rev. Lett. 53, 2173–2175 (1984).
[CrossRef]

T. H. Wood, C. A. Burrus, D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, “High-Speed Optical Modulation with GaAs/AlGaAs Quantum Wells in a p-i-n Diode Structure,” Appl. Phys. Lett. 44, 16–18 (1984).
[CrossRef]

Appl. Phys. Lett. (1)

T. H. Wood, C. A. Burrus, D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, “High-Speed Optical Modulation with GaAs/AlGaAs Quantum Wells in a p-i-n Diode Structure,” Appl. Phys. Lett. 44, 16–18 (1984).
[CrossRef]

J. Lightwave Technol. (1)

J. Singh, S.-C. Hong, P. K. Bhattacharya, R. Sahai, C. Lastufka, H. Sobel, “System Requirements and Feasibility Studies for Optical Modulators Based on GaAs/AlGaAs Multiquantum Well Structures for Optical Processing,” J. Lightwave Technol. 6, 818–831 (1988).
[CrossRef]

Phys. Rev. B (1)

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegman, T. H. Wood, C. A. Burrus, “Electric Field Dependence of Optical Absorption near the Bandgap of Quantum Well Structures,” Phys. Rev. B 32, 1043–1060 (1985).
[CrossRef]

Phys. Rev. Lett. (1)

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, C. A. Burrus, “Band-Edge Electroabsorption in the Quantum Well Structures: The Quantum Confined Stark Effect,” Phys. Rev. Lett. 53, 2173–2175 (1984).
[CrossRef]

Other (2)

Linear Data Book, National Semiconductor Corp. (1989), pp. 3–4 and 9–26.

J. G. Graeme, G. E. Tobey, L. P. Huelsman, Operational Amplifiers Design and Applications (McGraw-Hill, New York, 1971), p. 256.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Measured spectral shift of the heavy hole excitonic peak of a 5.0 period 100 Å GaAs/100 Å Al0.3Ga0.7As multiquantum well p-i-n modulator with temperature (bias 6 V) and with reverse bias (temperature 30°C).

Fig. 2
Fig. 2

Measured photocurrent-voltage characteristics at difference temperatures with fixed excitation of λ = 8495 Å.

Fig. 3
Fig. 3

The feedback circuit developed for stabilization of modulator prformance against temperature drifts.

Fig. 4
Fig. 4

Schematics of time-dependent voltage waveforms developed at different points of the feedback circuit.

Fig. 5
Fig. 5

Performance characteristics of feedback circuit: curves A and B depict the variations of the maximum measured photocurrent with temperature. In curve A, the optimum reverse bias to the p-i-n diode is adjusted manually, while in curve B, the voltages shown in curve C are applied automatically by the feedback circuit. Curves D, E and F show the measured photocurrent temperature variations for different fixed reverse bias voltages.

Fig. 6
Fig. 6

Oscilloscope traces corresponding to (a) applied ramp and hold voltage with the corresponding current, without feedback, (b) generation of the reset pulse at peak current, without feedback, and (c) clamping of the current at peak with feedback of the reset pulse.

Metrics