Abstract

The optimum geometry of a single-pass amplifier containing an active medium through which a light beam propagates is determined to obtain the maximum output power.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Siegman, Lasers (Oxford U. P., Oxford, 1986).
  2. W. W. Rigrod, “Saturation Effects in High-Gain Laser,” J. Appl. Phys 36, 2487–2490 (1965).
    [CrossRef]
  3. J. H. Jacob, M. Rokin, R. E. Klinkowstein, “Expanding Beam Concept for Building Very Large Excimer Laser Amplifiers,” Appl. Phys. Lett. 48, 318–320 (1986).
    [CrossRef]

1986 (1)

J. H. Jacob, M. Rokin, R. E. Klinkowstein, “Expanding Beam Concept for Building Very Large Excimer Laser Amplifiers,” Appl. Phys. Lett. 48, 318–320 (1986).
[CrossRef]

1965 (1)

W. W. Rigrod, “Saturation Effects in High-Gain Laser,” J. Appl. Phys 36, 2487–2490 (1965).
[CrossRef]

Jacob, J. H.

J. H. Jacob, M. Rokin, R. E. Klinkowstein, “Expanding Beam Concept for Building Very Large Excimer Laser Amplifiers,” Appl. Phys. Lett. 48, 318–320 (1986).
[CrossRef]

Klinkowstein, R. E.

J. H. Jacob, M. Rokin, R. E. Klinkowstein, “Expanding Beam Concept for Building Very Large Excimer Laser Amplifiers,” Appl. Phys. Lett. 48, 318–320 (1986).
[CrossRef]

Rigrod, W. W.

W. W. Rigrod, “Saturation Effects in High-Gain Laser,” J. Appl. Phys 36, 2487–2490 (1965).
[CrossRef]

Rokin, M.

J. H. Jacob, M. Rokin, R. E. Klinkowstein, “Expanding Beam Concept for Building Very Large Excimer Laser Amplifiers,” Appl. Phys. Lett. 48, 318–320 (1986).
[CrossRef]

Siegman, A.

A. Siegman, Lasers (Oxford U. P., Oxford, 1986).

Appl. Phys. Lett. (1)

J. H. Jacob, M. Rokin, R. E. Klinkowstein, “Expanding Beam Concept for Building Very Large Excimer Laser Amplifiers,” Appl. Phys. Lett. 48, 318–320 (1986).
[CrossRef]

J. Appl. Phys (1)

W. W. Rigrod, “Saturation Effects in High-Gain Laser,” J. Appl. Phys 36, 2487–2490 (1965).
[CrossRef]

Other (1)

A. Siegman, Lasers (Oxford U. P., Oxford, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (20)

Equations on this page are rendered with MathJax. Learn more.

d ϕ d z = g 0 ϕ 1 + ϕ ,
d P d z = S ( z ) P ( z ) g 0 S ( z ) + P ( z ) ,
P ( z ) = I ( z ) I s S ( z ) ,
P ( z ) = P ( 0 ) + g 0 0 z S ( x ) P ( x ) S ( x ) + P ( x ) d x .
V = 0 L S ( x ) d x .
J ( S ) = g 0 0 L S ( x ) P ( x ) S ( x ) + P ( x ) d x - λ 0 L S ( x ) d x + P ( 0 ) ,
g 0 0 L S ( x ) P ( x ) S ( x ) + P ( x ) d x + P ( 0 )
{ d d α [ J ( S + α T ) ] } α = 0 = 0 for any T .
S = V P Q ,
Q = 0 L P ( x ) d x .
d P d z = g 0 V P ( z ) V + Q ,
P ( z ) = P ( 0 ) exp [ g 0 V z / ( V + Q ) ] .
P ( 0 ) = I 0 I s S ( 0 ) ,
S ( 0 ) = P ( 0 ) V Q .
Q = I 0 I s V .
S ( z ) = S ( 0 ) exp [ g 0 z / ( 1 + I 0 / I s ) ] ,
S ( 0 ) = g 0 V ( 1 + I 0 I s ) { exp [ g 0 L ( 1 + I 0 / I s ) ] - 1 } .
P ( z ) = I 0 I s S ( z ) ,
I ( z ) = c t e = I 0 ,
r ( z ) = [ S ( z ) π ] 1 / 2 .

Metrics