Abstract

In the cited article the frequency stability of a single-mode He–Ne laser is concluded from the stability of the laser intensity. We point out that this derivation of frequency stability may show remarkable systematic errors.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Sasaki, K. Wakabayashi, S. Masuda, “Stabilization of Single Frequency Internal Mirror He–Ne Lasers,” Appl. Opt. 28, 1608–1609 (1989).
    [CrossRef] [PubMed]
  2. R. Balhorn, H. Kunzmann, F. Lebowsky, “Frequency Stabilization of Internal-Mirror Helium–Neon Lasers,” Appl. Opt. 11, 742–744 (1972).
    [CrossRef] [PubMed]
  3. S. J. Bennett, R. E. Ward, D. C. Wilson, “Comments on: Frequency Stabilization of Internal Mirror He–Ne Lasers,” Appl. Opt. 12, 1406 (1973).
    [CrossRef] [PubMed]
  4. P. E. Ciddor, R. M. Duffy, “Two-Mode Frequency-Stabilized He–Ne (633 nm) Lasers: Studies of Short- and Long-Term Stability,” J. Phys. E 16, 1223–1227 (1983).
    [CrossRef]
  5. D. Ullrich, “Frequency Stabilization of He–Ne Lasers by Intensity Comparison of Two Longitudinal Modes,” PTB-Bericht F-3, Braunschweig (July1988), ISSN 0179-0609/ISBN 3-88314-801-6.
  6. W. Holzapfel, W. Luxem, W. Settgast, “Signal Stability of Orthogonally Polarized Lasers—Experimental Results,” to be published.

1989 (1)

1988 (1)

D. Ullrich, “Frequency Stabilization of He–Ne Lasers by Intensity Comparison of Two Longitudinal Modes,” PTB-Bericht F-3, Braunschweig (July1988), ISSN 0179-0609/ISBN 3-88314-801-6.

1983 (1)

P. E. Ciddor, R. M. Duffy, “Two-Mode Frequency-Stabilized He–Ne (633 nm) Lasers: Studies of Short- and Long-Term Stability,” J. Phys. E 16, 1223–1227 (1983).
[CrossRef]

1973 (1)

1972 (1)

Balhorn, R.

Bennett, S. J.

Ciddor, P. E.

P. E. Ciddor, R. M. Duffy, “Two-Mode Frequency-Stabilized He–Ne (633 nm) Lasers: Studies of Short- and Long-Term Stability,” J. Phys. E 16, 1223–1227 (1983).
[CrossRef]

Duffy, R. M.

P. E. Ciddor, R. M. Duffy, “Two-Mode Frequency-Stabilized He–Ne (633 nm) Lasers: Studies of Short- and Long-Term Stability,” J. Phys. E 16, 1223–1227 (1983).
[CrossRef]

Holzapfel, W.

W. Holzapfel, W. Luxem, W. Settgast, “Signal Stability of Orthogonally Polarized Lasers—Experimental Results,” to be published.

Kunzmann, H.

Lebowsky, F.

Luxem, W.

W. Holzapfel, W. Luxem, W. Settgast, “Signal Stability of Orthogonally Polarized Lasers—Experimental Results,” to be published.

Masuda, S.

Sasaki, A.

Settgast, W.

W. Holzapfel, W. Luxem, W. Settgast, “Signal Stability of Orthogonally Polarized Lasers—Experimental Results,” to be published.

Ullrich, D.

D. Ullrich, “Frequency Stabilization of He–Ne Lasers by Intensity Comparison of Two Longitudinal Modes,” PTB-Bericht F-3, Braunschweig (July1988), ISSN 0179-0609/ISBN 3-88314-801-6.

Wakabayashi, K.

Ward, R. E.

Wilson, D. C.

Appl. Opt. (3)

J. Phys. E (1)

P. E. Ciddor, R. M. Duffy, “Two-Mode Frequency-Stabilized He–Ne (633 nm) Lasers: Studies of Short- and Long-Term Stability,” J. Phys. E 16, 1223–1227 (1983).
[CrossRef]

PTB-Bericht F-3, Braunschweig (1)

D. Ullrich, “Frequency Stabilization of He–Ne Lasers by Intensity Comparison of Two Longitudinal Modes,” PTB-Bericht F-3, Braunschweig (July1988), ISSN 0179-0609/ISBN 3-88314-801-6.

Other (1)

W. Holzapfel, W. Luxem, W. Settgast, “Signal Stability of Orthogonally Polarized Lasers—Experimental Results,” to be published.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Intensity I0 is the reference input of the control system. The laser power is regulated to this value. Due to gain variations or variations of the Q-factor of the resonator the frequency will shift from ν1 to ν2 without change of intensity.

Metrics