Abstract

The polarization properties of cascaded substrate-mode holographic optical elements are analyzed and demonstrated. The design criteria for polarization selective and nonselective elements are given and verified with experimental volume holograms formed in dichromated gelatin emulsions. Using the experimental grating parameters, it is estimated that a reconfigurable optical bus with eight nodes can be made. Improved control of hologram construction parameters can increase this to more than 500 nodes. Use of this device with a reconfigurable interchange coupler and a multistage optical bus is also examined.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical Interconnection for VLSI Systems,” Proc. IEEE 72, 850–866 (1984).
    [CrossRef]
  2. M. R. Feldman, S. C. Esner, C. C. Guest, S. H. Lee, “Comparison Between Optical and Electrical Interconnects Based on Power and Speed Considerations,” Appl. Opt. 27, 1742–1751 (1988).
    [CrossRef] [PubMed]
  3. R. K. Kostuk, J. W. Goodman, L. Hesselink, “Design Considerations for Holographic Optical Interconnects,” Appl. Opt. 26, 3947–3953 (1987).
    [CrossRef] [PubMed]
  4. J. Shamir, H. J. Caulfield, R. B. Johnson, “Massive Holographic Interconnection Networks and Their Limitations,” Appl. Opt. 28, 311–324 (1989).
    [CrossRef] [PubMed]
  5. K.-H. Brenner, F. Sauer, “Diffractive-Reflective Optical Interconnects,” Appl. Opt. 27, 4251–4254 (1988).
    [CrossRef] [PubMed]
  6. R. K. Kostuk, L. Wang, Y.-T. Huang, “Optical Clock Signal Distribution With Holographic Optical Elements,” Proc. Soc. Photo-Opt. Instrum. Eng. 977, 24–36 (1988).
  7. F. Sauer, “Fabrication of Diffractive-Reflective Optical Interconnects for Infrared Operation Based on Total Internal Reflection,” Appl. Opt. 28, 386–388 (1989).
    [CrossRef] [PubMed]
  8. T. Jannson, S. H. Lin, “Highly-Parallel Holographic Integrated Planar Interconnections,” in Technical Digest, Topical Meeting on Spatial Light Modulators and Applications (Optical Society of America, Washington, DC, 1988).
  9. R. K. Kostuk, M. Kato, Y.-T. Huang, “Reducing Alignment and Chromatic Sensitivity of Holographic Optical Interconnects With Substrate-Mode Holograms, Appl. Opt. 28, 4939–4944 (1989).
    [CrossRef] [PubMed]
  10. J. Jahns, A. Huang, “Planar Integration of Free-Space Optical Components,” Appl. Opt. 28, 1602–1605 (1989).
    [CrossRef] [PubMed]
  11. H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
  12. R. R. A. Syms, “Vector Effects in Holographic Optical Elements,” Opt. Acta 32, 1413–1425 (1985).
    [CrossRef]
  13. M. G. Moharam, T. K. Gaylord, “Three-Dimensional Vector Coupled-Wave Analysis of Planar-Grating Diffraction,” J. Opt. Soc. Am. 73, 1105–1112 (1983).
    [CrossRef]
  14. T. G. Georgekutty, H.-K. Liu, “Simplified Dichromated Gelatin Hologram Recording Process,” Appl. Opt. 26, 372–376 (1987).
    [CrossRef] [PubMed]
  15. M. R. Latta, R. V. Pole, “Design Techniques for Forming 488-nm Holographic Lenses With Reconstruction at 633 nm,” Appl. Opt. 18, 2418–2421 (1979).
    [CrossRef] [PubMed]
  16. J. B. McManus, R. S. Putnam, H. J. Caulfield, “Switched Holograms for Reconfigurable Optical Interconnection: Demonstration of Prototype Device,” Appl. Opt. 27, 4244–4250 (1988).
    [CrossRef] [PubMed]
  17. A. Lohmann, “Optical Bus Network,” Optik (Stuttgart) 74, 30–35 (1986).
  18. K. M. Johnson, M. R. Surette, J. Shamir, “Optical Interconnection Network Using Ferroelectric Liquid Crystal Gates,” Appl. Opt. 27, 17127–1733 (1988).
    [CrossRef]
  19. G. A. De Biase, “Optical Multistage Interconnection Networks for Large-Scale Multiprocessor Systems,” Appl. Opt. 27, 2017–2021 (1988).
    [CrossRef] [PubMed]
  20. J. Shamir, H. J. Caulfield, W. Micelli, R. J. Seymour, “Optical Computing and the Fredkin Gates,” Appl. Opt. 25, 1604–1607 (1986).
    [CrossRef] [PubMed]
  21. J. Shamir, “Three-Dimensional Optical Interconnection Gate Array,” Appl. Opt. 26, 3455–3457 (1987).
    [CrossRef] [PubMed]
  22. M. M. Mirsalehi, J. Shamir, H. J. Caulfield, “Three-Dimensional Optical Fredkin Gate Arrays Applied to Residue Arithmetic,” Appl. Opt. 28, 2429–2438 (1989).
    [CrossRef] [PubMed]

1989 (5)

1988 (6)

1987 (3)

1986 (2)

1985 (1)

R. R. A. Syms, “Vector Effects in Holographic Optical Elements,” Opt. Acta 32, 1413–1425 (1985).
[CrossRef]

1984 (1)

J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical Interconnection for VLSI Systems,” Proc. IEEE 72, 850–866 (1984).
[CrossRef]

1983 (1)

1979 (1)

1969 (1)

H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Athale, R. A.

J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical Interconnection for VLSI Systems,” Proc. IEEE 72, 850–866 (1984).
[CrossRef]

Brenner, K.-H.

Caulfield, H. J.

De Biase, G. A.

Esner, S. C.

Feldman, M. R.

Gaylord, T. K.

Georgekutty, T. G.

Goodman, J. W.

R. K. Kostuk, J. W. Goodman, L. Hesselink, “Design Considerations for Holographic Optical Interconnects,” Appl. Opt. 26, 3947–3953 (1987).
[CrossRef] [PubMed]

J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical Interconnection for VLSI Systems,” Proc. IEEE 72, 850–866 (1984).
[CrossRef]

Guest, C. C.

Hesselink, L.

Huang, A.

Huang, Y.-T.

R. K. Kostuk, M. Kato, Y.-T. Huang, “Reducing Alignment and Chromatic Sensitivity of Holographic Optical Interconnects With Substrate-Mode Holograms, Appl. Opt. 28, 4939–4944 (1989).
[CrossRef] [PubMed]

R. K. Kostuk, L. Wang, Y.-T. Huang, “Optical Clock Signal Distribution With Holographic Optical Elements,” Proc. Soc. Photo-Opt. Instrum. Eng. 977, 24–36 (1988).

Jahns, J.

Jannson, T.

T. Jannson, S. H. Lin, “Highly-Parallel Holographic Integrated Planar Interconnections,” in Technical Digest, Topical Meeting on Spatial Light Modulators and Applications (Optical Society of America, Washington, DC, 1988).

Johnson, K. M.

K. M. Johnson, M. R. Surette, J. Shamir, “Optical Interconnection Network Using Ferroelectric Liquid Crystal Gates,” Appl. Opt. 27, 17127–1733 (1988).
[CrossRef]

Johnson, R. B.

Kato, M.

Kogelnik, H.

H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Kostuk, R. K.

Kung, S. Y.

J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical Interconnection for VLSI Systems,” Proc. IEEE 72, 850–866 (1984).
[CrossRef]

Latta, M. R.

Lee, S. H.

Leonberger, F. I.

J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical Interconnection for VLSI Systems,” Proc. IEEE 72, 850–866 (1984).
[CrossRef]

Lin, S. H.

T. Jannson, S. H. Lin, “Highly-Parallel Holographic Integrated Planar Interconnections,” in Technical Digest, Topical Meeting on Spatial Light Modulators and Applications (Optical Society of America, Washington, DC, 1988).

Liu, H.-K.

Lohmann, A.

A. Lohmann, “Optical Bus Network,” Optik (Stuttgart) 74, 30–35 (1986).

McManus, J. B.

Micelli, W.

Mirsalehi, M. M.

Moharam, M. G.

Pole, R. V.

Putnam, R. S.

Sauer, F.

Seymour, R. J.

Shamir, J.

Surette, M. R.

K. M. Johnson, M. R. Surette, J. Shamir, “Optical Interconnection Network Using Ferroelectric Liquid Crystal Gates,” Appl. Opt. 27, 17127–1733 (1988).
[CrossRef]

Syms, R. R. A.

R. R. A. Syms, “Vector Effects in Holographic Optical Elements,” Opt. Acta 32, 1413–1425 (1985).
[CrossRef]

Wang, L.

R. K. Kostuk, L. Wang, Y.-T. Huang, “Optical Clock Signal Distribution With Holographic Optical Elements,” Proc. Soc. Photo-Opt. Instrum. Eng. 977, 24–36 (1988).

Appl. Opt. (15)

M. R. Feldman, S. C. Esner, C. C. Guest, S. H. Lee, “Comparison Between Optical and Electrical Interconnects Based on Power and Speed Considerations,” Appl. Opt. 27, 1742–1751 (1988).
[CrossRef] [PubMed]

R. K. Kostuk, J. W. Goodman, L. Hesselink, “Design Considerations for Holographic Optical Interconnects,” Appl. Opt. 26, 3947–3953 (1987).
[CrossRef] [PubMed]

J. Shamir, H. J. Caulfield, R. B. Johnson, “Massive Holographic Interconnection Networks and Their Limitations,” Appl. Opt. 28, 311–324 (1989).
[CrossRef] [PubMed]

K.-H. Brenner, F. Sauer, “Diffractive-Reflective Optical Interconnects,” Appl. Opt. 27, 4251–4254 (1988).
[CrossRef] [PubMed]

R. K. Kostuk, M. Kato, Y.-T. Huang, “Reducing Alignment and Chromatic Sensitivity of Holographic Optical Interconnects With Substrate-Mode Holograms, Appl. Opt. 28, 4939–4944 (1989).
[CrossRef] [PubMed]

J. Jahns, A. Huang, “Planar Integration of Free-Space Optical Components,” Appl. Opt. 28, 1602–1605 (1989).
[CrossRef] [PubMed]

F. Sauer, “Fabrication of Diffractive-Reflective Optical Interconnects for Infrared Operation Based on Total Internal Reflection,” Appl. Opt. 28, 386–388 (1989).
[CrossRef] [PubMed]

T. G. Georgekutty, H.-K. Liu, “Simplified Dichromated Gelatin Hologram Recording Process,” Appl. Opt. 26, 372–376 (1987).
[CrossRef] [PubMed]

M. R. Latta, R. V. Pole, “Design Techniques for Forming 488-nm Holographic Lenses With Reconstruction at 633 nm,” Appl. Opt. 18, 2418–2421 (1979).
[CrossRef] [PubMed]

J. B. McManus, R. S. Putnam, H. J. Caulfield, “Switched Holograms for Reconfigurable Optical Interconnection: Demonstration of Prototype Device,” Appl. Opt. 27, 4244–4250 (1988).
[CrossRef] [PubMed]

K. M. Johnson, M. R. Surette, J. Shamir, “Optical Interconnection Network Using Ferroelectric Liquid Crystal Gates,” Appl. Opt. 27, 17127–1733 (1988).
[CrossRef]

G. A. De Biase, “Optical Multistage Interconnection Networks for Large-Scale Multiprocessor Systems,” Appl. Opt. 27, 2017–2021 (1988).
[CrossRef] [PubMed]

J. Shamir, H. J. Caulfield, W. Micelli, R. J. Seymour, “Optical Computing and the Fredkin Gates,” Appl. Opt. 25, 1604–1607 (1986).
[CrossRef] [PubMed]

J. Shamir, “Three-Dimensional Optical Interconnection Gate Array,” Appl. Opt. 26, 3455–3457 (1987).
[CrossRef] [PubMed]

M. M. Mirsalehi, J. Shamir, H. J. Caulfield, “Three-Dimensional Optical Fredkin Gate Arrays Applied to Residue Arithmetic,” Appl. Opt. 28, 2429–2438 (1989).
[CrossRef] [PubMed]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

J. Opt. Soc. Am. (1)

Opt. Acta (1)

R. R. A. Syms, “Vector Effects in Holographic Optical Elements,” Opt. Acta 32, 1413–1425 (1985).
[CrossRef]

Optik (Stuttgart) (1)

A. Lohmann, “Optical Bus Network,” Optik (Stuttgart) 74, 30–35 (1986).

Proc. IEEE (1)

J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical Interconnection for VLSI Systems,” Proc. IEEE 72, 850–866 (1984).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

R. K. Kostuk, L. Wang, Y.-T. Huang, “Optical Clock Signal Distribution With Holographic Optical Elements,” Proc. Soc. Photo-Opt. Instrum. Eng. 977, 24–36 (1988).

Other (1)

T. Jannson, S. H. Lin, “Highly-Parallel Holographic Integrated Planar Interconnections,” in Technical Digest, Topical Meeting on Spatial Light Modulators and Applications (Optical Society of America, Washington, DC, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Hologram geometry showing the plane of incidence and s- and p-polarizations. K is the grating vector.

Fig. 2
Fig. 2

Geometry for substrate-mode input coupler. A normally incident beam is diffracted at an angle of 45° into the substrate (SUB) by hologram H1.

Fig. 3
Fig. 3

Calculated diffraction efficiency vs index modulation for a volume hologram with 11 μm thickness, glass index of 1.51, average emulsion index of 1.54, and a diffracted beam angle of 45° into the glass. The solid curve represents an s-polarized reconstruction beam, while the dashed curve is for p-polarized light.

Fig. 4
Fig. 4

Calculated diffraction efficiency vs index modulation for a volume hologram with 90° between the reconstruction and diffracted beams in the emulsion. Thickness and indices are the same as in Fig. 3; s-polarization is shown, and p-polarized light efficiency is zero.

Fig. 5
Fig. 5

Expanded plot of diffraction efficiency vs index modulation for the substrate mode input coupler with parameters used in Fig. 3. Solid curve is for an s-polarized reconstruction beam and dashed curve is for p-polarized light. The plot shows a region of index modulation with high s-efficiency and low p-efficiency, making it potentially useful for a polarizer.

Fig. 6
Fig. 6

Experimental configuration for a substrate-mode HOE with a polarization insensitive input coupler (H1) and a polarization selective element (H2). The prism (PR) is used to couple light out of the device to measure s- and p-efficiencies of the cascaded hologram.

Fig. 7
Fig. 7

Measured efficiency of the input coupler as a function of the reconstruction angle in glass prior to assembly.

Fig. 8
Fig. 8

Measured efficiency and transmittance as a function of incident angle for the polarization selective element prior to assembly: η s and η p are the efficiencies of the grating when reconstructed with s- and p-polarized light; T s and T p are the corresponding transmittances for s- and p-light.

Fig. 9
Fig. 9

Diffraction efficiency η and transmittance T as a function of the polarization angle of the reconstruction beam for a cascaded substrate-mode hologram.

Fig. 10
Fig. 10

(a) Node for a polarization selective optical bus: FLC, ferroelectric halfwave plate; PR, prism; PBS, polarization beam splitter. (b) Node for an optical bus using a substrate-mode hologram; FLC, ferroelectric liquid crystal; H1, holographic input/output coupler; H2, polarization selective hologram.

Fig. 11
Fig. 11

Geometric thickness limit for the SMH substrate determined by beam diameter D i .

Fig. 12
Fig. 12

Optical interchange coupler described in Ref. 18: FLC, ferroelectric liquid crystal; PBS, polarizing beam splitter; and M, mirror. The polarization states of two input beams are changed by a FLC resulting in a different pair of output states.

Fig. 13
Fig. 13

Possible implementation of an optical Fredkin gate using substrate-mode holograms: H1,H3, polarization insensitive holographic couplers; H2, polarization selective element; FLC, ferroelectric liquid crystal; ↕, s-polarized beam; ⋅, p-polarized beam.

Fig. 14
Fig. 14

Schematic arrangement of two cascaded SMH stages for analyzing crosstalk when (A) s-polarized light is incident and (B) p-polarized light is incident.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

c R R = - j κ s , p S , c S S = - j κ s , p R ,
κ s = π n i λ ,
κ p = - κ s cos 2 ( θ 0 - ϕ ) ,
η s , p = c S c R S S s , p * .
G = N ( N - 1 ) 2 .
M 1 = [ ln ( P r / P i ) ln ( η 1 η 2 ) ] .
C 1 = η s T s η s T p = T s T p ,
C 2 = η s η p η s η s = η p η s .

Metrics