Abstract

Photons incident to a total internal reflection surface that is also the object plane of a reflected light microscope will tunnel through a submicron gap in the presence of a dielectric sample. Tunneling increases exponentially with sample height for a homogeneous refractive index and is quantified by empirical calibration to a known geometry. Video photometry of the grays scale tunneling image is converted by a three-axis oscilloscope into a real time 3-D topographic image featuring variable perspective. Vertical resolution is detector-limited to less than a nanometer over a field depth, also detector-limited, of ~0.75λ; lateral resolution is enhanced to ~0.29λ. Photon tunneling images of diamond turned surfaces, optical data structures, a polished optical surface, and microlithographic structures are among those presented. Comparison and correlation with other methods for measuring surface topography in this regime are briefly discussed.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Binnig, H. Rohrer, “Scanning Tunneling Microscopy,” Surf. Sci. Netherlands 126, Nos. 1–3, 236–244 (1983).
    [CrossRef]
  2. J. A. Golovchenko, “The Tunneling Microscope: a New Look at the Atomic World,” Science 232, 48–53 (1982).
    [CrossRef]
  3. D. W. Pohl, W. Denk, U. Durig, “Optical Stethoscopy: Imaging with λ/20,” Proc. Soc. Photo-Opt. Instrum. Eng. 565, 56–61 (1985).
  4. J. M. Guerra, W. T. Plummer, “Optical Proximity Imaging Method and Apparatus,” U.S. Patent4,681,451 (Polaroid Corp.) (1987).
  5. J. M. Guerra, “Photon Tunneling Microscopy,” Proc. Soc. Photo-Opt. Instrum. Eng. 1009, 254–263 (1989).
  6. D. W. Pohl, U. C. Fischer, U. T. Durig, “Scanning Near-Field Optical Microscopy (SNOM),” J. Microsc. 152, Pt. 3, 853–861 (1988).
    [CrossRef]
  7. R. C. Reddick, R. J. Warmack, T. L. Ferrell, “New Form of Scanning Optical Microscopy,” Phys. Rev. B 39, 767–770 (1989).
    [CrossRef]
  8. I. Newton, Opticks (Dover, New York, 1730, 1979), Part I, pp. 193–224.
  9. N. J. Harrick, Internal Reflection Spectroscopy (Harrick Scientific Corp., Ossinning, NY, 1979), pp. 1–65.
  10. I. N. Court, F. K. von Willisen, “Frustrated Total Internal Reflection and Application of its Principle to Laser Cavity Design,” Appl. Opt. 3, 719–726 (1964).
    [CrossRef]
  11. C. W. McCutchen, “Optical Systems for Observing Surface Topography by Frustrated Total Internal Reflection and by Interference,” Rev. Sci. Instrum. 35, No. 10, 1340–1345 (1964).
    [CrossRef]
  12. J. Strong, Concepts of Classical Optics (Freeman, San Francisco, 1958), pp. 124–126, 516–518.
  13. S. G. Lipson, H. Lipson, Optical Physics (Cambridge U. P., London, 1969), pp. 79–109, 282–285.
  14. S. Zhu, “Frustrated Total Internal Reflection: a Demonstration and Review,” Am. J. Phys. 54, No. 7, 601–607 (1986).
    [CrossRef]
  15. J. M. Vigoureux, C. Girard, D. Courjon, “General Principles of Scanning Tunneling Optical Microscopy,” Opt. Lett. 14, 1039–1041 (1989).
    [CrossRef] [PubMed]
  16. G. O. Reynolds, J. B. Develis, G. P. Parrent, B. J. Thompson, The New Physical Optics Notebook: Tutorials in Fourier Optics (American Institute of Physics, New York, 1989), pp. 88–92, 110–117, 145–148.

1989 (3)

J. M. Guerra, “Photon Tunneling Microscopy,” Proc. Soc. Photo-Opt. Instrum. Eng. 1009, 254–263 (1989).

R. C. Reddick, R. J. Warmack, T. L. Ferrell, “New Form of Scanning Optical Microscopy,” Phys. Rev. B 39, 767–770 (1989).
[CrossRef]

J. M. Vigoureux, C. Girard, D. Courjon, “General Principles of Scanning Tunneling Optical Microscopy,” Opt. Lett. 14, 1039–1041 (1989).
[CrossRef] [PubMed]

1988 (1)

D. W. Pohl, U. C. Fischer, U. T. Durig, “Scanning Near-Field Optical Microscopy (SNOM),” J. Microsc. 152, Pt. 3, 853–861 (1988).
[CrossRef]

1986 (1)

S. Zhu, “Frustrated Total Internal Reflection: a Demonstration and Review,” Am. J. Phys. 54, No. 7, 601–607 (1986).
[CrossRef]

1985 (1)

D. W. Pohl, W. Denk, U. Durig, “Optical Stethoscopy: Imaging with λ/20,” Proc. Soc. Photo-Opt. Instrum. Eng. 565, 56–61 (1985).

1983 (1)

G. Binnig, H. Rohrer, “Scanning Tunneling Microscopy,” Surf. Sci. Netherlands 126, Nos. 1–3, 236–244 (1983).
[CrossRef]

1982 (1)

J. A. Golovchenko, “The Tunneling Microscope: a New Look at the Atomic World,” Science 232, 48–53 (1982).
[CrossRef]

1964 (2)

I. N. Court, F. K. von Willisen, “Frustrated Total Internal Reflection and Application of its Principle to Laser Cavity Design,” Appl. Opt. 3, 719–726 (1964).
[CrossRef]

C. W. McCutchen, “Optical Systems for Observing Surface Topography by Frustrated Total Internal Reflection and by Interference,” Rev. Sci. Instrum. 35, No. 10, 1340–1345 (1964).
[CrossRef]

Binnig, G.

G. Binnig, H. Rohrer, “Scanning Tunneling Microscopy,” Surf. Sci. Netherlands 126, Nos. 1–3, 236–244 (1983).
[CrossRef]

Courjon, D.

Court, I. N.

Denk, W.

D. W. Pohl, W. Denk, U. Durig, “Optical Stethoscopy: Imaging with λ/20,” Proc. Soc. Photo-Opt. Instrum. Eng. 565, 56–61 (1985).

Develis, J. B.

G. O. Reynolds, J. B. Develis, G. P. Parrent, B. J. Thompson, The New Physical Optics Notebook: Tutorials in Fourier Optics (American Institute of Physics, New York, 1989), pp. 88–92, 110–117, 145–148.

Durig, U.

D. W. Pohl, W. Denk, U. Durig, “Optical Stethoscopy: Imaging with λ/20,” Proc. Soc. Photo-Opt. Instrum. Eng. 565, 56–61 (1985).

Durig, U. T.

D. W. Pohl, U. C. Fischer, U. T. Durig, “Scanning Near-Field Optical Microscopy (SNOM),” J. Microsc. 152, Pt. 3, 853–861 (1988).
[CrossRef]

Ferrell, T. L.

R. C. Reddick, R. J. Warmack, T. L. Ferrell, “New Form of Scanning Optical Microscopy,” Phys. Rev. B 39, 767–770 (1989).
[CrossRef]

Fischer, U. C.

D. W. Pohl, U. C. Fischer, U. T. Durig, “Scanning Near-Field Optical Microscopy (SNOM),” J. Microsc. 152, Pt. 3, 853–861 (1988).
[CrossRef]

Girard, C.

Golovchenko, J. A.

J. A. Golovchenko, “The Tunneling Microscope: a New Look at the Atomic World,” Science 232, 48–53 (1982).
[CrossRef]

Guerra, J. M.

J. M. Guerra, “Photon Tunneling Microscopy,” Proc. Soc. Photo-Opt. Instrum. Eng. 1009, 254–263 (1989).

J. M. Guerra, W. T. Plummer, “Optical Proximity Imaging Method and Apparatus,” U.S. Patent4,681,451 (Polaroid Corp.) (1987).

Harrick, N. J.

N. J. Harrick, Internal Reflection Spectroscopy (Harrick Scientific Corp., Ossinning, NY, 1979), pp. 1–65.

Lipson, H.

S. G. Lipson, H. Lipson, Optical Physics (Cambridge U. P., London, 1969), pp. 79–109, 282–285.

Lipson, S. G.

S. G. Lipson, H. Lipson, Optical Physics (Cambridge U. P., London, 1969), pp. 79–109, 282–285.

McCutchen, C. W.

C. W. McCutchen, “Optical Systems for Observing Surface Topography by Frustrated Total Internal Reflection and by Interference,” Rev. Sci. Instrum. 35, No. 10, 1340–1345 (1964).
[CrossRef]

Newton, I.

I. Newton, Opticks (Dover, New York, 1730, 1979), Part I, pp. 193–224.

Parrent, G. P.

G. O. Reynolds, J. B. Develis, G. P. Parrent, B. J. Thompson, The New Physical Optics Notebook: Tutorials in Fourier Optics (American Institute of Physics, New York, 1989), pp. 88–92, 110–117, 145–148.

Plummer, W. T.

J. M. Guerra, W. T. Plummer, “Optical Proximity Imaging Method and Apparatus,” U.S. Patent4,681,451 (Polaroid Corp.) (1987).

Pohl, D. W.

D. W. Pohl, U. C. Fischer, U. T. Durig, “Scanning Near-Field Optical Microscopy (SNOM),” J. Microsc. 152, Pt. 3, 853–861 (1988).
[CrossRef]

D. W. Pohl, W. Denk, U. Durig, “Optical Stethoscopy: Imaging with λ/20,” Proc. Soc. Photo-Opt. Instrum. Eng. 565, 56–61 (1985).

Reddick, R. C.

R. C. Reddick, R. J. Warmack, T. L. Ferrell, “New Form of Scanning Optical Microscopy,” Phys. Rev. B 39, 767–770 (1989).
[CrossRef]

Reynolds, G. O.

G. O. Reynolds, J. B. Develis, G. P. Parrent, B. J. Thompson, The New Physical Optics Notebook: Tutorials in Fourier Optics (American Institute of Physics, New York, 1989), pp. 88–92, 110–117, 145–148.

Rohrer, H.

G. Binnig, H. Rohrer, “Scanning Tunneling Microscopy,” Surf. Sci. Netherlands 126, Nos. 1–3, 236–244 (1983).
[CrossRef]

Strong, J.

J. Strong, Concepts of Classical Optics (Freeman, San Francisco, 1958), pp. 124–126, 516–518.

Thompson, B. J.

G. O. Reynolds, J. B. Develis, G. P. Parrent, B. J. Thompson, The New Physical Optics Notebook: Tutorials in Fourier Optics (American Institute of Physics, New York, 1989), pp. 88–92, 110–117, 145–148.

Vigoureux, J. M.

von Willisen, F. K.

Warmack, R. J.

R. C. Reddick, R. J. Warmack, T. L. Ferrell, “New Form of Scanning Optical Microscopy,” Phys. Rev. B 39, 767–770 (1989).
[CrossRef]

Zhu, S.

S. Zhu, “Frustrated Total Internal Reflection: a Demonstration and Review,” Am. J. Phys. 54, No. 7, 601–607 (1986).
[CrossRef]

Am. J. Phys. (1)

S. Zhu, “Frustrated Total Internal Reflection: a Demonstration and Review,” Am. J. Phys. 54, No. 7, 601–607 (1986).
[CrossRef]

Appl. Opt. (1)

J. Microsc. (1)

D. W. Pohl, U. C. Fischer, U. T. Durig, “Scanning Near-Field Optical Microscopy (SNOM),” J. Microsc. 152, Pt. 3, 853–861 (1988).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (1)

R. C. Reddick, R. J. Warmack, T. L. Ferrell, “New Form of Scanning Optical Microscopy,” Phys. Rev. B 39, 767–770 (1989).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (2)

D. W. Pohl, W. Denk, U. Durig, “Optical Stethoscopy: Imaging with λ/20,” Proc. Soc. Photo-Opt. Instrum. Eng. 565, 56–61 (1985).

J. M. Guerra, “Photon Tunneling Microscopy,” Proc. Soc. Photo-Opt. Instrum. Eng. 1009, 254–263 (1989).

Rev. Sci. Instrum. (1)

C. W. McCutchen, “Optical Systems for Observing Surface Topography by Frustrated Total Internal Reflection and by Interference,” Rev. Sci. Instrum. 35, No. 10, 1340–1345 (1964).
[CrossRef]

Science (1)

J. A. Golovchenko, “The Tunneling Microscope: a New Look at the Atomic World,” Science 232, 48–53 (1982).
[CrossRef]

Surf. Sci. Netherlands (1)

G. Binnig, H. Rohrer, “Scanning Tunneling Microscopy,” Surf. Sci. Netherlands 126, Nos. 1–3, 236–244 (1983).
[CrossRef]

Other (6)

J. M. Guerra, W. T. Plummer, “Optical Proximity Imaging Method and Apparatus,” U.S. Patent4,681,451 (Polaroid Corp.) (1987).

I. Newton, Opticks (Dover, New York, 1730, 1979), Part I, pp. 193–224.

N. J. Harrick, Internal Reflection Spectroscopy (Harrick Scientific Corp., Ossinning, NY, 1979), pp. 1–65.

J. Strong, Concepts of Classical Optics (Freeman, San Francisco, 1958), pp. 124–126, 516–518.

S. G. Lipson, H. Lipson, Optical Physics (Cambridge U. P., London, 1969), pp. 79–109, 282–285.

G. O. Reynolds, J. B. Develis, G. P. Parrent, B. J. Thompson, The New Physical Optics Notebook: Tutorials in Fourier Optics (American Institute of Physics, New York, 1989), pp. 88–92, 110–117, 145–148.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Evanescent field, associated with photons tunneling into medium 2, as a continuation of the parent field in medium 1.

Fig. 2
Fig. 2

Photon tunneling microscope schematic.

Fig. 3
Fig. 3

Relationship of sample, transducer, and objective in PTM.

Fig. 4
Fig. 4

PTM sample stage with integral transducer.

Fig. 5
Fig. 5

(a) Diffraction intensity profiles for (left) normal incidence and (right) TIR illumination (not to scale), (b) photon tunneling image of collodion grating with 0.16 μm spacing at field depth of PTM, and (c) inherent high contrast of PTM: photon tunneling image of optical data pits, 0.140 μm depth, in uncoated polycarbonate (high resolution Dage-Mti camera courtesy D. Porterfield).

Fig. 6
Fig. 6

Comparison of (a) linear, predicted PTM, and nonlinear photometric response to an ideal edge, and (b) PTM images of binary edges in silicon: (upper) illumination N.A. reduced to 1 to demonstrate edge “ringing”; (lower normal, more linear PTM response at operating N.A. 1.25. Images are intensity-normalized and exagerrated in height; the slight break in slope about halfway down is real (silicon structure courtesy of J. Melngailis and Jeung-Soo Huh, M.I.T. Submicron Laboratory).

Fig. 7
Fig. 7

Rotated Brewster polarizer.

Fig. 8
Fig. 8

PTM objective with integral transducer and oil reservoir.

Fig. 9
Fig. 9

Isomat three-axis oscilloscope.

Fig. 10
Fig. 10

Calibration sequence: contact of calibration sphere (a) of radius R to transducer penetrates the tunneling potential in a controlled way, resulting in the (b) gray scale tunneling image. Video photometry along the radial path r thus forms (c), the mapping function for the sample height h.

Fig. 11
Fig. 11

Prime image with no sample, showing the bright TIR annulus and dim specular center.

Fig. 12
Fig. 12

Determination of vertical resolution from the mapping function of an optical sphere.

Fig. 13
Fig. 13

First row: PTM (left) and WYKO (right) images of an optical storage molded structure; second row: PTM (left) and SEM (right) images of a binary optic (sample courtesy P. Mokry, Polaroid Corp.); third row: PTM (left) and Nomarski (right) images of sputtered gold (PTM is a replica); bottom: PTM profile (upper trace) and Tencor stylus profile of diamond turned acrylic sample seen in Fig. 14 g.

Fig. 14
Fig. 14

(a) Diffraction optic (sample courtesy of J. Cowan, Polaroid Corp.). (b)–(d) Additional perspectives of (a). (e) Center of a diamond-turned acrylic surface, showing spiral into center and tool chatter in radial direction. Chatter is about 0.015 μm high. (Sample courtesy of D. Combs, J. Mader). (f) Another view, with chatter decreasing in outboard direction. (g) Rings 9–16 on the sample in (e), with no tool chatter. Pitch is about 10 μm with a typical amplitude of 0.035 μm. (h) Further outboard from (g), with random tool movement beginning. (i)–(l) Four perspectives of another diamond-turned acrylic surface with finer tool feed than (e) with resulting fishscale. (m)–(r) Another diamond-turned acrylic surface. (m) and (n) are two perspectives of the center, showing central peak from decenter; tool chatter is evident as well. (o) and (p) are two perspectives of the turning pattern further outboard; notice the extreme roughness to one side of the pattern, a result of tool drag. (q) and (r) are two zoomed perspectives of the same turning pattern. (s) Optical storage pits in polycarbonate, with surrounding trench from laser overwrite. (t) Glass optical surface with an RMS (TIS) roughness of about a nanometer. (u) Si on Si etched lithographic pattern (sample courtesy J. Melngailis and J. Huh, MIT Submicron Laboratory). (v) Magnetic storage medium, with head-wear tracks running diagonally. (w) Diffraction optic (sample courtesy P. Mokry and D. Slafer, Polaroid Corp.). (x) Dried human blood cells.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

sin - 1 ( η 2 / η 1 )
E evanescent = E 0 exp ( - z / d p ) ,
d p = λ 1 2 π ( sin 2 θ - η 21 2 ) 1 / 2 ,
h = R - ( R 2 - r 2 ) 1 / 2 .

Metrics