Abstract

Two configurations of a scanning near field optical microscope working in reflection are presented. Results exhibiting nanometric resolution are given and discussed.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Binnig, H. Rohrer, C. Gerber, E. Weibel, “Scanning Tunneling Microscopy,” Phys. Rev. Lett. 49, 57–60 (1982).
    [Crossref]
  2. G. Binnig, C. F. Quate, C. Gerber, “Atomic Force Microscopy,” Phys. Rev. Lett. 56, 930–933 (1986).
    [Crossref] [PubMed]
  3. C. C. Williams, H. K. Wickramasinghe, “Scanning Thermal Profiler,” Appl. Phys. Lett. 49, 1587–1589 (1986).
    [Crossref]
  4. K. Dransfeld, J. Xu, “The Heat Transfer Between a Heated Tip and a Substrate: Fast Thermal Microscopy,” Journal of Microscopy 152, Pt. 1, 35–42 (1988).
    [Crossref]
  5. U. Guthner, C. Fischer, K. Dransfeld, “Scanning Near-Field Acoustic Microscopy,” Appl. Phys. B 48, 89–92 (1989).
    [Crossref]
  6. G. A. Massey, “Microscopy and Pattern Generation with Scanned Evanescent Waves,” Appl. Opt. 23, 658–660 (1984).
    [Crossref] [PubMed]
  7. D. W. Pohl, W. Denk, M. Lanz, “Optical Stethoscopy: Image Recording with Resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
    [Crossref]
  8. A. Lewis, M. Isaacson, A. Harootunian, A. Muray, “Development of a 500 A Spatial Resolution Light Microscope,” Ultramicroscopy 13, 227–237 (1984).
    [Crossref]
  9. U. C. Fischer, “Optical Characteristics of 0.1 μm Circular Apertures in a Metal Film as Light Sources for Scanning Ultramicroscopy,” J. Vac. Sci. Technol. B 3, 386–390 (1985).
    [Crossref]
  10. M. Bertero, P. Boccaci, G. J. Brakehoff, F. Malfanti, X. Van der Voort, “Three-Dimensional Image Restoration and Super- Resolution in Fluorescence Confocal Microscopy,” J. Microsc. to be published (1989).
  11. J. A. O’Keefe, “Resolving Power of Visible Light,” J. Opt. Soc. Am. 46, 359–360 (1956).
    [Crossref]
  12. E. A. Ash, G. Nicholls, “Super-Resolution Aperture Scanning Microscope,” Nature London 237, 510–512 (1972).
    [Crossref] [PubMed]
  13. R. C. Reddick, R. J. Warmack, T. L. Ferrell, “New Form of Scanning Optical Microscopy,” Phys. Rev. B 39, 767–770 (1989).
    [Crossref]
  14. D. Courjon, K. Sarayeddine, M. Spajer, “Scanning Tunneling Optical Microscopy,” Opt. Commun. 71, 23–28 (1989).
    [Crossref]
  15. F. de Fornel, J. P. Goudonnet, L. Salomon, E. Lesniewska, “An Evanescent Field Optical Microscope,” ECO2 Opt. Storage Scanning Technol. 1139, 77–84 (1989).
  16. H. A. Bethe, “Theory of Diffraction by Small Holes,” Phys. Rey. 66, 163–182 (1944).
    [Crossref]
  17. C. J. Bouwkamp, “On the Diffraction of Electromagnetic Waves by Small Circular Disks and Holes,” Philips Res. Rep. 5, 401–442 (1950).
  18. E. W. Marchand, E. Wolf, “Diffraction at Small Apertures in Black Screens,” J. Opt. Soc. Am. 59, 79–90 (1969).
    [Crossref]
  19. R. E. English, N. George, “Diffraction from a Circular Aperture: On-Axis Field Strength,” Appl. Opt. 26, 2360–2363 (1987).
    [Crossref] [PubMed]
  20. J. Lekner, P. J. Castle, “Local Field Near a Surface of Cristalline Dielectric,” Physica A 101, 89 (1980).
    [Crossref]
  21. O. Keller, B. Sonderkaer, “Elastic Scattering of Light from a Few Atomic Dipole on a Flat Metal Surface,” Proc. Soc. Photo-Opt. Instrum. Eng. 959, (1988).
  22. A. Johner, P. Schaaf, A. Schmitt, “Approche microscopique de la reflexion optique sous incidence normale,” J. Opt. Paris 19, 207–219 (1988).
    [Crossref]
  23. J. M. Vigoureux, C. Girard, D. Courjon, “General Principles of Scanning Tunneling Optical Microscopy,” Opt. Lett. 14, 1039–1041 (1989).
    [Crossref] [PubMed]
  24. B. Labani, C. Girard, D. Courjon, D. Van Labeke, “Optical Interaction Between a Dielectric Tip and a Nanometric Lattice: Implication for Near-Field Microscopy,” submitted to J. Opt. Soc. Am. B, 7, 936 (1990).
    [Crossref]
  25. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, (1968) p. 48.
  26. C. K. Carniglia, L. Mandel, “Quantization of Evanescent Electromagnetic Waves,” Phys. Rev. D 3, 280–296 (1971).
    [Crossref]
  27. J. M. Vigoureux, L. D’Hooge, X. Van Labeke, “Quantization of Evanescent Electromagnetic Waves: Momentum of the Electromagnetic Field very Close to a Dielectric Medium,” Phys. Rev A 21, 347–355 (1980).
    [Crossref]
  28. E. Wolf, M. Nieto-Vesperinas, “Analyticity of the Angular Spectrum Amplitude of Scattered Fields and Some of its Consequences,” J. Opt. Soc. Am. A 2, 886–890 (1985).
    [Crossref]
  29. J. Guerra, “Photon Tunneling Microscopy,” Proc. Soc. Photo-Opt. Instrum. Eng. 1009, 254–263 (1988).
  30. C. Girard, M. Spajer, “Model for Reflection Near-Field Optical Microscopy,” to be published in or: in this issue Appl. Opt.29, (1990).
    [Crossref] [PubMed]
  31. E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, E. Kratschmer, “Near Field Scanning Optical Microscopy (NSOM), Development and Biological Applications,” Biophys. J. 49, 269–279 (1986).
    [Crossref] [PubMed]

1989 (5)

U. Guthner, C. Fischer, K. Dransfeld, “Scanning Near-Field Acoustic Microscopy,” Appl. Phys. B 48, 89–92 (1989).
[Crossref]

R. C. Reddick, R. J. Warmack, T. L. Ferrell, “New Form of Scanning Optical Microscopy,” Phys. Rev. B 39, 767–770 (1989).
[Crossref]

D. Courjon, K. Sarayeddine, M. Spajer, “Scanning Tunneling Optical Microscopy,” Opt. Commun. 71, 23–28 (1989).
[Crossref]

F. de Fornel, J. P. Goudonnet, L. Salomon, E. Lesniewska, “An Evanescent Field Optical Microscope,” ECO2 Opt. Storage Scanning Technol. 1139, 77–84 (1989).

J. M. Vigoureux, C. Girard, D. Courjon, “General Principles of Scanning Tunneling Optical Microscopy,” Opt. Lett. 14, 1039–1041 (1989).
[Crossref] [PubMed]

1988 (4)

O. Keller, B. Sonderkaer, “Elastic Scattering of Light from a Few Atomic Dipole on a Flat Metal Surface,” Proc. Soc. Photo-Opt. Instrum. Eng. 959, (1988).

A. Johner, P. Schaaf, A. Schmitt, “Approche microscopique de la reflexion optique sous incidence normale,” J. Opt. Paris 19, 207–219 (1988).
[Crossref]

J. Guerra, “Photon Tunneling Microscopy,” Proc. Soc. Photo-Opt. Instrum. Eng. 1009, 254–263 (1988).

K. Dransfeld, J. Xu, “The Heat Transfer Between a Heated Tip and a Substrate: Fast Thermal Microscopy,” Journal of Microscopy 152, Pt. 1, 35–42 (1988).
[Crossref]

1987 (1)

1986 (3)

E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, E. Kratschmer, “Near Field Scanning Optical Microscopy (NSOM), Development and Biological Applications,” Biophys. J. 49, 269–279 (1986).
[Crossref] [PubMed]

G. Binnig, C. F. Quate, C. Gerber, “Atomic Force Microscopy,” Phys. Rev. Lett. 56, 930–933 (1986).
[Crossref] [PubMed]

C. C. Williams, H. K. Wickramasinghe, “Scanning Thermal Profiler,” Appl. Phys. Lett. 49, 1587–1589 (1986).
[Crossref]

1985 (2)

U. C. Fischer, “Optical Characteristics of 0.1 μm Circular Apertures in a Metal Film as Light Sources for Scanning Ultramicroscopy,” J. Vac. Sci. Technol. B 3, 386–390 (1985).
[Crossref]

E. Wolf, M. Nieto-Vesperinas, “Analyticity of the Angular Spectrum Amplitude of Scattered Fields and Some of its Consequences,” J. Opt. Soc. Am. A 2, 886–890 (1985).
[Crossref]

1984 (3)

G. A. Massey, “Microscopy and Pattern Generation with Scanned Evanescent Waves,” Appl. Opt. 23, 658–660 (1984).
[Crossref] [PubMed]

D. W. Pohl, W. Denk, M. Lanz, “Optical Stethoscopy: Image Recording with Resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[Crossref]

A. Lewis, M. Isaacson, A. Harootunian, A. Muray, “Development of a 500 A Spatial Resolution Light Microscope,” Ultramicroscopy 13, 227–237 (1984).
[Crossref]

1982 (1)

G. Binnig, H. Rohrer, C. Gerber, E. Weibel, “Scanning Tunneling Microscopy,” Phys. Rev. Lett. 49, 57–60 (1982).
[Crossref]

1980 (2)

J. Lekner, P. J. Castle, “Local Field Near a Surface of Cristalline Dielectric,” Physica A 101, 89 (1980).
[Crossref]

J. M. Vigoureux, L. D’Hooge, X. Van Labeke, “Quantization of Evanescent Electromagnetic Waves: Momentum of the Electromagnetic Field very Close to a Dielectric Medium,” Phys. Rev A 21, 347–355 (1980).
[Crossref]

1972 (1)

E. A. Ash, G. Nicholls, “Super-Resolution Aperture Scanning Microscope,” Nature London 237, 510–512 (1972).
[Crossref] [PubMed]

1971 (1)

C. K. Carniglia, L. Mandel, “Quantization of Evanescent Electromagnetic Waves,” Phys. Rev. D 3, 280–296 (1971).
[Crossref]

1969 (1)

1956 (1)

1950 (1)

C. J. Bouwkamp, “On the Diffraction of Electromagnetic Waves by Small Circular Disks and Holes,” Philips Res. Rep. 5, 401–442 (1950).

1944 (1)

H. A. Bethe, “Theory of Diffraction by Small Holes,” Phys. Rey. 66, 163–182 (1944).
[Crossref]

Ash, E. A.

E. A. Ash, G. Nicholls, “Super-Resolution Aperture Scanning Microscope,” Nature London 237, 510–512 (1972).
[Crossref] [PubMed]

Bertero, M.

M. Bertero, P. Boccaci, G. J. Brakehoff, F. Malfanti, X. Van der Voort, “Three-Dimensional Image Restoration and Super- Resolution in Fluorescence Confocal Microscopy,” J. Microsc. to be published (1989).

Bethe, H. A.

H. A. Bethe, “Theory of Diffraction by Small Holes,” Phys. Rey. 66, 163–182 (1944).
[Crossref]

Betzig, E.

E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, E. Kratschmer, “Near Field Scanning Optical Microscopy (NSOM), Development and Biological Applications,” Biophys. J. 49, 269–279 (1986).
[Crossref] [PubMed]

Binnig, G.

G. Binnig, C. F. Quate, C. Gerber, “Atomic Force Microscopy,” Phys. Rev. Lett. 56, 930–933 (1986).
[Crossref] [PubMed]

G. Binnig, H. Rohrer, C. Gerber, E. Weibel, “Scanning Tunneling Microscopy,” Phys. Rev. Lett. 49, 57–60 (1982).
[Crossref]

Boccaci, P.

M. Bertero, P. Boccaci, G. J. Brakehoff, F. Malfanti, X. Van der Voort, “Three-Dimensional Image Restoration and Super- Resolution in Fluorescence Confocal Microscopy,” J. Microsc. to be published (1989).

Bouwkamp, C. J.

C. J. Bouwkamp, “On the Diffraction of Electromagnetic Waves by Small Circular Disks and Holes,” Philips Res. Rep. 5, 401–442 (1950).

Brakehoff, G. J.

M. Bertero, P. Boccaci, G. J. Brakehoff, F. Malfanti, X. Van der Voort, “Three-Dimensional Image Restoration and Super- Resolution in Fluorescence Confocal Microscopy,” J. Microsc. to be published (1989).

Carniglia, C. K.

C. K. Carniglia, L. Mandel, “Quantization of Evanescent Electromagnetic Waves,” Phys. Rev. D 3, 280–296 (1971).
[Crossref]

Castle, P. J.

J. Lekner, P. J. Castle, “Local Field Near a Surface of Cristalline Dielectric,” Physica A 101, 89 (1980).
[Crossref]

Courjon, D.

J. M. Vigoureux, C. Girard, D. Courjon, “General Principles of Scanning Tunneling Optical Microscopy,” Opt. Lett. 14, 1039–1041 (1989).
[Crossref] [PubMed]

D. Courjon, K. Sarayeddine, M. Spajer, “Scanning Tunneling Optical Microscopy,” Opt. Commun. 71, 23–28 (1989).
[Crossref]

B. Labani, C. Girard, D. Courjon, D. Van Labeke, “Optical Interaction Between a Dielectric Tip and a Nanometric Lattice: Implication for Near-Field Microscopy,” submitted to J. Opt. Soc. Am. B, 7, 936 (1990).
[Crossref]

D’Hooge, L.

J. M. Vigoureux, L. D’Hooge, X. Van Labeke, “Quantization of Evanescent Electromagnetic Waves: Momentum of the Electromagnetic Field very Close to a Dielectric Medium,” Phys. Rev A 21, 347–355 (1980).
[Crossref]

de Fornel, F.

F. de Fornel, J. P. Goudonnet, L. Salomon, E. Lesniewska, “An Evanescent Field Optical Microscope,” ECO2 Opt. Storage Scanning Technol. 1139, 77–84 (1989).

Denk, W.

D. W. Pohl, W. Denk, M. Lanz, “Optical Stethoscopy: Image Recording with Resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[Crossref]

Dransfeld, K.

U. Guthner, C. Fischer, K. Dransfeld, “Scanning Near-Field Acoustic Microscopy,” Appl. Phys. B 48, 89–92 (1989).
[Crossref]

K. Dransfeld, J. Xu, “The Heat Transfer Between a Heated Tip and a Substrate: Fast Thermal Microscopy,” Journal of Microscopy 152, Pt. 1, 35–42 (1988).
[Crossref]

English, R. E.

Ferrell, T. L.

R. C. Reddick, R. J. Warmack, T. L. Ferrell, “New Form of Scanning Optical Microscopy,” Phys. Rev. B 39, 767–770 (1989).
[Crossref]

Fischer, C.

U. Guthner, C. Fischer, K. Dransfeld, “Scanning Near-Field Acoustic Microscopy,” Appl. Phys. B 48, 89–92 (1989).
[Crossref]

Fischer, U. C.

U. C. Fischer, “Optical Characteristics of 0.1 μm Circular Apertures in a Metal Film as Light Sources for Scanning Ultramicroscopy,” J. Vac. Sci. Technol. B 3, 386–390 (1985).
[Crossref]

George, N.

Gerber, C.

G. Binnig, C. F. Quate, C. Gerber, “Atomic Force Microscopy,” Phys. Rev. Lett. 56, 930–933 (1986).
[Crossref] [PubMed]

G. Binnig, H. Rohrer, C. Gerber, E. Weibel, “Scanning Tunneling Microscopy,” Phys. Rev. Lett. 49, 57–60 (1982).
[Crossref]

Girard, C.

J. M. Vigoureux, C. Girard, D. Courjon, “General Principles of Scanning Tunneling Optical Microscopy,” Opt. Lett. 14, 1039–1041 (1989).
[Crossref] [PubMed]

C. Girard, M. Spajer, “Model for Reflection Near-Field Optical Microscopy,” to be published in or: in this issue Appl. Opt.29, (1990).
[Crossref] [PubMed]

B. Labani, C. Girard, D. Courjon, D. Van Labeke, “Optical Interaction Between a Dielectric Tip and a Nanometric Lattice: Implication for Near-Field Microscopy,” submitted to J. Opt. Soc. Am. B, 7, 936 (1990).
[Crossref]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, (1968) p. 48.

Goudonnet, J. P.

F. de Fornel, J. P. Goudonnet, L. Salomon, E. Lesniewska, “An Evanescent Field Optical Microscope,” ECO2 Opt. Storage Scanning Technol. 1139, 77–84 (1989).

Guerra, J.

J. Guerra, “Photon Tunneling Microscopy,” Proc. Soc. Photo-Opt. Instrum. Eng. 1009, 254–263 (1988).

Guthner, U.

U. Guthner, C. Fischer, K. Dransfeld, “Scanning Near-Field Acoustic Microscopy,” Appl. Phys. B 48, 89–92 (1989).
[Crossref]

Harootunian, A.

E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, E. Kratschmer, “Near Field Scanning Optical Microscopy (NSOM), Development and Biological Applications,” Biophys. J. 49, 269–279 (1986).
[Crossref] [PubMed]

A. Lewis, M. Isaacson, A. Harootunian, A. Muray, “Development of a 500 A Spatial Resolution Light Microscope,” Ultramicroscopy 13, 227–237 (1984).
[Crossref]

Isaacson, M.

E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, E. Kratschmer, “Near Field Scanning Optical Microscopy (NSOM), Development and Biological Applications,” Biophys. J. 49, 269–279 (1986).
[Crossref] [PubMed]

A. Lewis, M. Isaacson, A. Harootunian, A. Muray, “Development of a 500 A Spatial Resolution Light Microscope,” Ultramicroscopy 13, 227–237 (1984).
[Crossref]

Johner, A.

A. Johner, P. Schaaf, A. Schmitt, “Approche microscopique de la reflexion optique sous incidence normale,” J. Opt. Paris 19, 207–219 (1988).
[Crossref]

Keller, O.

O. Keller, B. Sonderkaer, “Elastic Scattering of Light from a Few Atomic Dipole on a Flat Metal Surface,” Proc. Soc. Photo-Opt. Instrum. Eng. 959, (1988).

Kratschmer, E.

E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, E. Kratschmer, “Near Field Scanning Optical Microscopy (NSOM), Development and Biological Applications,” Biophys. J. 49, 269–279 (1986).
[Crossref] [PubMed]

Labani, B.

B. Labani, C. Girard, D. Courjon, D. Van Labeke, “Optical Interaction Between a Dielectric Tip and a Nanometric Lattice: Implication for Near-Field Microscopy,” submitted to J. Opt. Soc. Am. B, 7, 936 (1990).
[Crossref]

Lanz, M.

D. W. Pohl, W. Denk, M. Lanz, “Optical Stethoscopy: Image Recording with Resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[Crossref]

Lekner, J.

J. Lekner, P. J. Castle, “Local Field Near a Surface of Cristalline Dielectric,” Physica A 101, 89 (1980).
[Crossref]

Lesniewska, E.

F. de Fornel, J. P. Goudonnet, L. Salomon, E. Lesniewska, “An Evanescent Field Optical Microscope,” ECO2 Opt. Storage Scanning Technol. 1139, 77–84 (1989).

Lewis, A.

E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, E. Kratschmer, “Near Field Scanning Optical Microscopy (NSOM), Development and Biological Applications,” Biophys. J. 49, 269–279 (1986).
[Crossref] [PubMed]

A. Lewis, M. Isaacson, A. Harootunian, A. Muray, “Development of a 500 A Spatial Resolution Light Microscope,” Ultramicroscopy 13, 227–237 (1984).
[Crossref]

Malfanti, F.

M. Bertero, P. Boccaci, G. J. Brakehoff, F. Malfanti, X. Van der Voort, “Three-Dimensional Image Restoration and Super- Resolution in Fluorescence Confocal Microscopy,” J. Microsc. to be published (1989).

Mandel, L.

C. K. Carniglia, L. Mandel, “Quantization of Evanescent Electromagnetic Waves,” Phys. Rev. D 3, 280–296 (1971).
[Crossref]

Marchand, E. W.

Massey, G. A.

Muray, A.

A. Lewis, M. Isaacson, A. Harootunian, A. Muray, “Development of a 500 A Spatial Resolution Light Microscope,” Ultramicroscopy 13, 227–237 (1984).
[Crossref]

Nicholls, G.

E. A. Ash, G. Nicholls, “Super-Resolution Aperture Scanning Microscope,” Nature London 237, 510–512 (1972).
[Crossref] [PubMed]

Nieto-Vesperinas, M.

O’Keefe, J. A.

Pohl, D. W.

D. W. Pohl, W. Denk, M. Lanz, “Optical Stethoscopy: Image Recording with Resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[Crossref]

Quate, C. F.

G. Binnig, C. F. Quate, C. Gerber, “Atomic Force Microscopy,” Phys. Rev. Lett. 56, 930–933 (1986).
[Crossref] [PubMed]

Reddick, R. C.

R. C. Reddick, R. J. Warmack, T. L. Ferrell, “New Form of Scanning Optical Microscopy,” Phys. Rev. B 39, 767–770 (1989).
[Crossref]

Rohrer, H.

G. Binnig, H. Rohrer, C. Gerber, E. Weibel, “Scanning Tunneling Microscopy,” Phys. Rev. Lett. 49, 57–60 (1982).
[Crossref]

Salomon, L.

F. de Fornel, J. P. Goudonnet, L. Salomon, E. Lesniewska, “An Evanescent Field Optical Microscope,” ECO2 Opt. Storage Scanning Technol. 1139, 77–84 (1989).

Sarayeddine, K.

D. Courjon, K. Sarayeddine, M. Spajer, “Scanning Tunneling Optical Microscopy,” Opt. Commun. 71, 23–28 (1989).
[Crossref]

Schaaf, P.

A. Johner, P. Schaaf, A. Schmitt, “Approche microscopique de la reflexion optique sous incidence normale,” J. Opt. Paris 19, 207–219 (1988).
[Crossref]

Schmitt, A.

A. Johner, P. Schaaf, A. Schmitt, “Approche microscopique de la reflexion optique sous incidence normale,” J. Opt. Paris 19, 207–219 (1988).
[Crossref]

Sonderkaer, B.

O. Keller, B. Sonderkaer, “Elastic Scattering of Light from a Few Atomic Dipole on a Flat Metal Surface,” Proc. Soc. Photo-Opt. Instrum. Eng. 959, (1988).

Spajer, M.

D. Courjon, K. Sarayeddine, M. Spajer, “Scanning Tunneling Optical Microscopy,” Opt. Commun. 71, 23–28 (1989).
[Crossref]

C. Girard, M. Spajer, “Model for Reflection Near-Field Optical Microscopy,” to be published in or: in this issue Appl. Opt.29, (1990).
[Crossref] [PubMed]

Van der Voort, X.

M. Bertero, P. Boccaci, G. J. Brakehoff, F. Malfanti, X. Van der Voort, “Three-Dimensional Image Restoration and Super- Resolution in Fluorescence Confocal Microscopy,” J. Microsc. to be published (1989).

Van Labeke, D.

B. Labani, C. Girard, D. Courjon, D. Van Labeke, “Optical Interaction Between a Dielectric Tip and a Nanometric Lattice: Implication for Near-Field Microscopy,” submitted to J. Opt. Soc. Am. B, 7, 936 (1990).
[Crossref]

Van Labeke, X.

J. M. Vigoureux, L. D’Hooge, X. Van Labeke, “Quantization of Evanescent Electromagnetic Waves: Momentum of the Electromagnetic Field very Close to a Dielectric Medium,” Phys. Rev A 21, 347–355 (1980).
[Crossref]

Vigoureux, J. M.

J. M. Vigoureux, C. Girard, D. Courjon, “General Principles of Scanning Tunneling Optical Microscopy,” Opt. Lett. 14, 1039–1041 (1989).
[Crossref] [PubMed]

J. M. Vigoureux, L. D’Hooge, X. Van Labeke, “Quantization of Evanescent Electromagnetic Waves: Momentum of the Electromagnetic Field very Close to a Dielectric Medium,” Phys. Rev A 21, 347–355 (1980).
[Crossref]

Warmack, R. J.

R. C. Reddick, R. J. Warmack, T. L. Ferrell, “New Form of Scanning Optical Microscopy,” Phys. Rev. B 39, 767–770 (1989).
[Crossref]

Weibel, E.

G. Binnig, H. Rohrer, C. Gerber, E. Weibel, “Scanning Tunneling Microscopy,” Phys. Rev. Lett. 49, 57–60 (1982).
[Crossref]

Wickramasinghe, H. K.

C. C. Williams, H. K. Wickramasinghe, “Scanning Thermal Profiler,” Appl. Phys. Lett. 49, 1587–1589 (1986).
[Crossref]

Williams, C. C.

C. C. Williams, H. K. Wickramasinghe, “Scanning Thermal Profiler,” Appl. Phys. Lett. 49, 1587–1589 (1986).
[Crossref]

Wolf, E.

Xu, J.

K. Dransfeld, J. Xu, “The Heat Transfer Between a Heated Tip and a Substrate: Fast Thermal Microscopy,” Journal of Microscopy 152, Pt. 1, 35–42 (1988).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (1)

U. Guthner, C. Fischer, K. Dransfeld, “Scanning Near-Field Acoustic Microscopy,” Appl. Phys. B 48, 89–92 (1989).
[Crossref]

Appl. Phys. Lett. (2)

D. W. Pohl, W. Denk, M. Lanz, “Optical Stethoscopy: Image Recording with Resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[Crossref]

C. C. Williams, H. K. Wickramasinghe, “Scanning Thermal Profiler,” Appl. Phys. Lett. 49, 1587–1589 (1986).
[Crossref]

Biophys. J. (1)

E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, E. Kratschmer, “Near Field Scanning Optical Microscopy (NSOM), Development and Biological Applications,” Biophys. J. 49, 269–279 (1986).
[Crossref] [PubMed]

ECO2 Opt. Storage Scanning Technol. (1)

F. de Fornel, J. P. Goudonnet, L. Salomon, E. Lesniewska, “An Evanescent Field Optical Microscope,” ECO2 Opt. Storage Scanning Technol. 1139, 77–84 (1989).

J. Opt. Paris (1)

A. Johner, P. Schaaf, A. Schmitt, “Approche microscopique de la reflexion optique sous incidence normale,” J. Opt. Paris 19, 207–219 (1988).
[Crossref]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (1)

J. Vac. Sci. Technol. B (1)

U. C. Fischer, “Optical Characteristics of 0.1 μm Circular Apertures in a Metal Film as Light Sources for Scanning Ultramicroscopy,” J. Vac. Sci. Technol. B 3, 386–390 (1985).
[Crossref]

Journal of Microscopy (1)

K. Dransfeld, J. Xu, “The Heat Transfer Between a Heated Tip and a Substrate: Fast Thermal Microscopy,” Journal of Microscopy 152, Pt. 1, 35–42 (1988).
[Crossref]

Nature London (1)

E. A. Ash, G. Nicholls, “Super-Resolution Aperture Scanning Microscope,” Nature London 237, 510–512 (1972).
[Crossref] [PubMed]

Opt. Commun. (1)

D. Courjon, K. Sarayeddine, M. Spajer, “Scanning Tunneling Optical Microscopy,” Opt. Commun. 71, 23–28 (1989).
[Crossref]

Opt. Lett. (1)

Philips Res. Rep. (1)

C. J. Bouwkamp, “On the Diffraction of Electromagnetic Waves by Small Circular Disks and Holes,” Philips Res. Rep. 5, 401–442 (1950).

Phys. Rev A (1)

J. M. Vigoureux, L. D’Hooge, X. Van Labeke, “Quantization of Evanescent Electromagnetic Waves: Momentum of the Electromagnetic Field very Close to a Dielectric Medium,” Phys. Rev A 21, 347–355 (1980).
[Crossref]

Phys. Rev. B (1)

R. C. Reddick, R. J. Warmack, T. L. Ferrell, “New Form of Scanning Optical Microscopy,” Phys. Rev. B 39, 767–770 (1989).
[Crossref]

Phys. Rev. D (1)

C. K. Carniglia, L. Mandel, “Quantization of Evanescent Electromagnetic Waves,” Phys. Rev. D 3, 280–296 (1971).
[Crossref]

Phys. Rev. Lett. (2)

G. Binnig, H. Rohrer, C. Gerber, E. Weibel, “Scanning Tunneling Microscopy,” Phys. Rev. Lett. 49, 57–60 (1982).
[Crossref]

G. Binnig, C. F. Quate, C. Gerber, “Atomic Force Microscopy,” Phys. Rev. Lett. 56, 930–933 (1986).
[Crossref] [PubMed]

Phys. Rey. (1)

H. A. Bethe, “Theory of Diffraction by Small Holes,” Phys. Rey. 66, 163–182 (1944).
[Crossref]

Physica A (1)

J. Lekner, P. J. Castle, “Local Field Near a Surface of Cristalline Dielectric,” Physica A 101, 89 (1980).
[Crossref]

Proc. Soc. Photo-Opt. Instrum. Eng. (2)

O. Keller, B. Sonderkaer, “Elastic Scattering of Light from a Few Atomic Dipole on a Flat Metal Surface,” Proc. Soc. Photo-Opt. Instrum. Eng. 959, (1988).

J. Guerra, “Photon Tunneling Microscopy,” Proc. Soc. Photo-Opt. Instrum. Eng. 1009, 254–263 (1988).

Ultramicroscopy (1)

A. Lewis, M. Isaacson, A. Harootunian, A. Muray, “Development of a 500 A Spatial Resolution Light Microscope,” Ultramicroscopy 13, 227–237 (1984).
[Crossref]

Other (4)

M. Bertero, P. Boccaci, G. J. Brakehoff, F. Malfanti, X. Van der Voort, “Three-Dimensional Image Restoration and Super- Resolution in Fluorescence Confocal Microscopy,” J. Microsc. to be published (1989).

C. Girard, M. Spajer, “Model for Reflection Near-Field Optical Microscopy,” to be published in or: in this issue Appl. Opt.29, (1990).
[Crossref] [PubMed]

B. Labani, C. Girard, D. Courjon, D. Van Labeke, “Optical Interaction Between a Dielectric Tip and a Nanometric Lattice: Implication for Near-Field Microscopy,” submitted to J. Opt. Soc. Am. B, 7, 936 (1990).
[Crossref]

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, (1968) p. 48.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Illumination system using total internal reflection.

Fig. 2
Fig. 2

Experimental arrangement using internal illumination (scanning tunneling optical microscope).

Fig. 3
Fig. 3

Detected intensity vs tip–sample distance when the tip moves periodically [motion amplitude Dz: 2.5 nm (with background) and 1 nm (in the window)].

Fig. 4
Fig. 4

(a) Three-dimensional image of fractures on a mica sheet in the constant distance mode. The resolution is ~10 (x-scanning: 500 nm; y-scanning: 50 nm); (b) scheme of the fractures.

Fig. 5
Fig. 5

Three-dimensional images of the same sample site on a glass plate (800 × 800 nm) in constant distance mode. Since the distance between tip and sample varies during scanning, the image is a mixture of near field (elevated part of the object) and far field (object hollows). The first ones correspond to sharp details, whereas the second ones give smooth contributions containing only low spatial frequencies.

Fig. 6
Fig. 6

Three-dimensional images of a glass plate with polystyrene spheres (constant field density mode). The diameter of each sphere is ~250 nm. (a) and (b) correspond to the same analyzed site (the presence of sphere chains is detected); (c) shows an isolated sphere.

Fig. 7
Fig. 7

External reflection near field optical microscope.

Fig. 8
Fig. 8

Dependence of the detected field density vs the tip–sample distance. The tip moves linearly along the z-axis. We can clearly note the far field behavior for z larger than half a wavelength and the near field behavior at a distance of ~100 nm.

Fig. 9
Fig. 9

Line scanning of a 120-nm thick glass grating. The periodicity is well reproduced, although the resolution is worse than with the first configuration yet.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

F ( u , v ) = - f ( x , y , 0 ) exp [ - j 2 π ( u x + u y ) ] d x d y ,
U ( x , y , 0 ) f ( x , y , 0 ) .
U ( x , y , ) = - F ( u , v ) exp [ j 2 π ( u x + v y ) ] d u d v ,
F ( α k / 2 π , β k / 2 π ) = + - U ( x , y , 0 ) exp [ - j k ( α x + β y ) ] d x d y
U ( x , y , z ) = k 2 4 π 2 - F ( α k / 2 π , β k / 2 π , z ) exp [ + j k ( α x + β y ) ] d α d β .
F ( α k / 2 π , β k / 2 π , z ) = F ( α k / 2 π , β k / 2 π ) exp [ j k ( 1 - α 2 - β 2 . z ) ] .
α 2 + β 2 < 1 ,
α 2 + β 2 > 1 ,
F ( α k / 2 π , β k / 2 π ; z ) = F ( α k / 2 π , β k / 2 π ) exp [ - k ( α 2 + β 2 - 1 . z ) ] .
u = α k / 2 π ,             v = β k / 2 π .
u 2 + v 2 < ( k / 2 π ) 2 .
u = k / 2 π .
u = 2 u = k / π .
F ( α k / 2 π , β k / 2 π , z ) = F ( α k / 2 π , β k / 2 π ) × exp { - k [ ( α n ) 2 + ( β n ) 2 - 1 . z ] } .
u 2 + v 2 < ( n k / 2 π ) 2 .

Metrics