Abstract

Peak reflectivity measurements of W/C, Mo/Si, and Mo/B4C multilayer mirrors have been performed using line and synchrotron radiation in the 8–190 Å wavelength range. Short wavelength measurements using a line source were corrected for nonmonochromatic and divergent incident radiation. Reflectivities of Mo/Si mirrors, measured with synchrotron radiation, ranged from 25 to 44% but decreased significantly around the Si absorption edge. Mo/B4C multilayer mirrors were measured that had peak reflectivities from 10 to 25% between 90 and 200 Å and bandpasses as small as 3 Å.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Barbee, P. Pianetto, R. Redaelli, R. Tatchyn, T. W. Barbee, “Molybdenum-Silicon Multilayer Monochromator for the Extreme Ultraviolet,” Appl. Phys. Lett., 50, 1841–1843 (1987).
    [CrossRef]
  2. J. A. Trail, R. L. Byer, “Compact Scanning Soft-X-Ray Microscope Using a Laser-Produced Plasma Source and Normal-Incidence Multilayer Mirrors,” Opt. Lett. 14, 539–541 (1989).
    [CrossRef] [PubMed]
  3. C. M. Brown, U. Feldman, J. J. Seely, M. C. Richardson, H. Chen, J. H. Underwood, A. Zigler, “Imaging of Laser-Produced Plasmas at 44 Å Using a Multilayer Mirror,” Opt. Commun. 68, 190–195 (1988).
    [CrossRef]
  4. A. B. C. Walker, T. W. Barbee, R. B. Hoover, J. F. Lindblom, “Soft X-Ray Images of the Solar Corona with a Normal-Incidence Cassegrain Multilayer Telescope,” Science, 241, 1781–1787 (1988).
    [CrossRef] [PubMed]
  5. J. H. Underwood, T. W. Barbee, “Layered Synthetic Microstructures as Bragg Diffractors for X Rays and Extreme Ultraviolet: Theory and Predicted Performance,” Appl. Opt. 20, 3027–3034 (1981).
    [CrossRef] [PubMed]
  6. P. Lee, R. J. Bartlett, D. R. Kania, “Soft X-Ray Optics Using Multilayer Mirrors,” Opt. Eng. 24, 197–201 (1985).
    [CrossRef]
  7. D. L. Windt, J. B. Kortright, “XUV Optical Characterization of Thin Film and Multilayer Reflectors,” Proc. Soc. Photo-Opt. Instrum. Eng. 1160, 246–250 (1989).
  8. T. W. Barbee, S. Mrowka, M. C. Hettrick, “Molybdenum-Silicon Multilayer Mirrors for the Extreme Ultraviolet,” Appl. Opt. 24, 883–886 (1985).
    [CrossRef] [PubMed]
  9. B. L. Henke, “Low Energy X-Ray Spectroscopy with Crystals and Multilayers,” AIP Conference Proceedings No. 75, 85 (1981).
    [CrossRef]
  10. B. Day, J. Grosso, R. Bartlett, T. Barbee, “Layered Synthetic Microstructures: Measurements and Applications,” Nucl. Instrum. Methods 208, 245–249 (1983).
    [CrossRef]
  11. S. V. Gaponov, V. V. Dubrov, I. G. Zabrodin, A. I. Kuzmichev, B. M. Luskin, N. N. Salashchenko, “Multilayer Normal-Incidence Mirrors for the Wavelength Interval 125–200 Å,” Sov. Tech. Phys. Lett. 13, 87–89 (1987).
  12. M. Finkenthal, A. P. Zwicker, S. Regan, H. W. Moos, D. Stutman, “Near Normal Incidence Spectroscopy of a Penning Ionization Discharge in the 110–180 Å Range with Flat Multilayer Mirrors,” Appl. Opt. 29, 3467–3472 (1990).
    [CrossRef] [PubMed]

1990 (1)

1989 (2)

J. A. Trail, R. L. Byer, “Compact Scanning Soft-X-Ray Microscope Using a Laser-Produced Plasma Source and Normal-Incidence Multilayer Mirrors,” Opt. Lett. 14, 539–541 (1989).
[CrossRef] [PubMed]

D. L. Windt, J. B. Kortright, “XUV Optical Characterization of Thin Film and Multilayer Reflectors,” Proc. Soc. Photo-Opt. Instrum. Eng. 1160, 246–250 (1989).

1988 (2)

C. M. Brown, U. Feldman, J. J. Seely, M. C. Richardson, H. Chen, J. H. Underwood, A. Zigler, “Imaging of Laser-Produced Plasmas at 44 Å Using a Multilayer Mirror,” Opt. Commun. 68, 190–195 (1988).
[CrossRef]

A. B. C. Walker, T. W. Barbee, R. B. Hoover, J. F. Lindblom, “Soft X-Ray Images of the Solar Corona with a Normal-Incidence Cassegrain Multilayer Telescope,” Science, 241, 1781–1787 (1988).
[CrossRef] [PubMed]

1987 (2)

T. W. Barbee, P. Pianetto, R. Redaelli, R. Tatchyn, T. W. Barbee, “Molybdenum-Silicon Multilayer Monochromator for the Extreme Ultraviolet,” Appl. Phys. Lett., 50, 1841–1843 (1987).
[CrossRef]

S. V. Gaponov, V. V. Dubrov, I. G. Zabrodin, A. I. Kuzmichev, B. M. Luskin, N. N. Salashchenko, “Multilayer Normal-Incidence Mirrors for the Wavelength Interval 125–200 Å,” Sov. Tech. Phys. Lett. 13, 87–89 (1987).

1985 (2)

P. Lee, R. J. Bartlett, D. R. Kania, “Soft X-Ray Optics Using Multilayer Mirrors,” Opt. Eng. 24, 197–201 (1985).
[CrossRef]

T. W. Barbee, S. Mrowka, M. C. Hettrick, “Molybdenum-Silicon Multilayer Mirrors for the Extreme Ultraviolet,” Appl. Opt. 24, 883–886 (1985).
[CrossRef] [PubMed]

1983 (1)

B. Day, J. Grosso, R. Bartlett, T. Barbee, “Layered Synthetic Microstructures: Measurements and Applications,” Nucl. Instrum. Methods 208, 245–249 (1983).
[CrossRef]

1981 (2)

Barbee, T.

B. Day, J. Grosso, R. Bartlett, T. Barbee, “Layered Synthetic Microstructures: Measurements and Applications,” Nucl. Instrum. Methods 208, 245–249 (1983).
[CrossRef]

Barbee, T. W.

A. B. C. Walker, T. W. Barbee, R. B. Hoover, J. F. Lindblom, “Soft X-Ray Images of the Solar Corona with a Normal-Incidence Cassegrain Multilayer Telescope,” Science, 241, 1781–1787 (1988).
[CrossRef] [PubMed]

T. W. Barbee, P. Pianetto, R. Redaelli, R. Tatchyn, T. W. Barbee, “Molybdenum-Silicon Multilayer Monochromator for the Extreme Ultraviolet,” Appl. Phys. Lett., 50, 1841–1843 (1987).
[CrossRef]

T. W. Barbee, P. Pianetto, R. Redaelli, R. Tatchyn, T. W. Barbee, “Molybdenum-Silicon Multilayer Monochromator for the Extreme Ultraviolet,” Appl. Phys. Lett., 50, 1841–1843 (1987).
[CrossRef]

T. W. Barbee, S. Mrowka, M. C. Hettrick, “Molybdenum-Silicon Multilayer Mirrors for the Extreme Ultraviolet,” Appl. Opt. 24, 883–886 (1985).
[CrossRef] [PubMed]

J. H. Underwood, T. W. Barbee, “Layered Synthetic Microstructures as Bragg Diffractors for X Rays and Extreme Ultraviolet: Theory and Predicted Performance,” Appl. Opt. 20, 3027–3034 (1981).
[CrossRef] [PubMed]

Bartlett, R.

B. Day, J. Grosso, R. Bartlett, T. Barbee, “Layered Synthetic Microstructures: Measurements and Applications,” Nucl. Instrum. Methods 208, 245–249 (1983).
[CrossRef]

Bartlett, R. J.

P. Lee, R. J. Bartlett, D. R. Kania, “Soft X-Ray Optics Using Multilayer Mirrors,” Opt. Eng. 24, 197–201 (1985).
[CrossRef]

Brown, C. M.

C. M. Brown, U. Feldman, J. J. Seely, M. C. Richardson, H. Chen, J. H. Underwood, A. Zigler, “Imaging of Laser-Produced Plasmas at 44 Å Using a Multilayer Mirror,” Opt. Commun. 68, 190–195 (1988).
[CrossRef]

Byer, R. L.

Chen, H.

C. M. Brown, U. Feldman, J. J. Seely, M. C. Richardson, H. Chen, J. H. Underwood, A. Zigler, “Imaging of Laser-Produced Plasmas at 44 Å Using a Multilayer Mirror,” Opt. Commun. 68, 190–195 (1988).
[CrossRef]

Day, B.

B. Day, J. Grosso, R. Bartlett, T. Barbee, “Layered Synthetic Microstructures: Measurements and Applications,” Nucl. Instrum. Methods 208, 245–249 (1983).
[CrossRef]

Dubrov, V. V.

S. V. Gaponov, V. V. Dubrov, I. G. Zabrodin, A. I. Kuzmichev, B. M. Luskin, N. N. Salashchenko, “Multilayer Normal-Incidence Mirrors for the Wavelength Interval 125–200 Å,” Sov. Tech. Phys. Lett. 13, 87–89 (1987).

Feldman, U.

C. M. Brown, U. Feldman, J. J. Seely, M. C. Richardson, H. Chen, J. H. Underwood, A. Zigler, “Imaging of Laser-Produced Plasmas at 44 Å Using a Multilayer Mirror,” Opt. Commun. 68, 190–195 (1988).
[CrossRef]

Finkenthal, M.

Gaponov, S. V.

S. V. Gaponov, V. V. Dubrov, I. G. Zabrodin, A. I. Kuzmichev, B. M. Luskin, N. N. Salashchenko, “Multilayer Normal-Incidence Mirrors for the Wavelength Interval 125–200 Å,” Sov. Tech. Phys. Lett. 13, 87–89 (1987).

Grosso, J.

B. Day, J. Grosso, R. Bartlett, T. Barbee, “Layered Synthetic Microstructures: Measurements and Applications,” Nucl. Instrum. Methods 208, 245–249 (1983).
[CrossRef]

Henke, B. L.

B. L. Henke, “Low Energy X-Ray Spectroscopy with Crystals and Multilayers,” AIP Conference Proceedings No. 75, 85 (1981).
[CrossRef]

Hettrick, M. C.

Hoover, R. B.

A. B. C. Walker, T. W. Barbee, R. B. Hoover, J. F. Lindblom, “Soft X-Ray Images of the Solar Corona with a Normal-Incidence Cassegrain Multilayer Telescope,” Science, 241, 1781–1787 (1988).
[CrossRef] [PubMed]

Kania, D. R.

P. Lee, R. J. Bartlett, D. R. Kania, “Soft X-Ray Optics Using Multilayer Mirrors,” Opt. Eng. 24, 197–201 (1985).
[CrossRef]

Kortright, J. B.

D. L. Windt, J. B. Kortright, “XUV Optical Characterization of Thin Film and Multilayer Reflectors,” Proc. Soc. Photo-Opt. Instrum. Eng. 1160, 246–250 (1989).

Kuzmichev, A. I.

S. V. Gaponov, V. V. Dubrov, I. G. Zabrodin, A. I. Kuzmichev, B. M. Luskin, N. N. Salashchenko, “Multilayer Normal-Incidence Mirrors for the Wavelength Interval 125–200 Å,” Sov. Tech. Phys. Lett. 13, 87–89 (1987).

Lee, P.

P. Lee, R. J. Bartlett, D. R. Kania, “Soft X-Ray Optics Using Multilayer Mirrors,” Opt. Eng. 24, 197–201 (1985).
[CrossRef]

Lindblom, J. F.

A. B. C. Walker, T. W. Barbee, R. B. Hoover, J. F. Lindblom, “Soft X-Ray Images of the Solar Corona with a Normal-Incidence Cassegrain Multilayer Telescope,” Science, 241, 1781–1787 (1988).
[CrossRef] [PubMed]

Luskin, B. M.

S. V. Gaponov, V. V. Dubrov, I. G. Zabrodin, A. I. Kuzmichev, B. M. Luskin, N. N. Salashchenko, “Multilayer Normal-Incidence Mirrors for the Wavelength Interval 125–200 Å,” Sov. Tech. Phys. Lett. 13, 87–89 (1987).

Moos, H. W.

Mrowka, S.

Pianetto, P.

T. W. Barbee, P. Pianetto, R. Redaelli, R. Tatchyn, T. W. Barbee, “Molybdenum-Silicon Multilayer Monochromator for the Extreme Ultraviolet,” Appl. Phys. Lett., 50, 1841–1843 (1987).
[CrossRef]

Redaelli, R.

T. W. Barbee, P. Pianetto, R. Redaelli, R. Tatchyn, T. W. Barbee, “Molybdenum-Silicon Multilayer Monochromator for the Extreme Ultraviolet,” Appl. Phys. Lett., 50, 1841–1843 (1987).
[CrossRef]

Regan, S.

Richardson, M. C.

C. M. Brown, U. Feldman, J. J. Seely, M. C. Richardson, H. Chen, J. H. Underwood, A. Zigler, “Imaging of Laser-Produced Plasmas at 44 Å Using a Multilayer Mirror,” Opt. Commun. 68, 190–195 (1988).
[CrossRef]

Salashchenko, N. N.

S. V. Gaponov, V. V. Dubrov, I. G. Zabrodin, A. I. Kuzmichev, B. M. Luskin, N. N. Salashchenko, “Multilayer Normal-Incidence Mirrors for the Wavelength Interval 125–200 Å,” Sov. Tech. Phys. Lett. 13, 87–89 (1987).

Seely, J. J.

C. M. Brown, U. Feldman, J. J. Seely, M. C. Richardson, H. Chen, J. H. Underwood, A. Zigler, “Imaging of Laser-Produced Plasmas at 44 Å Using a Multilayer Mirror,” Opt. Commun. 68, 190–195 (1988).
[CrossRef]

Stutman, D.

Tatchyn, R.

T. W. Barbee, P. Pianetto, R. Redaelli, R. Tatchyn, T. W. Barbee, “Molybdenum-Silicon Multilayer Monochromator for the Extreme Ultraviolet,” Appl. Phys. Lett., 50, 1841–1843 (1987).
[CrossRef]

Trail, J. A.

Underwood, J. H.

C. M. Brown, U. Feldman, J. J. Seely, M. C. Richardson, H. Chen, J. H. Underwood, A. Zigler, “Imaging of Laser-Produced Plasmas at 44 Å Using a Multilayer Mirror,” Opt. Commun. 68, 190–195 (1988).
[CrossRef]

J. H. Underwood, T. W. Barbee, “Layered Synthetic Microstructures as Bragg Diffractors for X Rays and Extreme Ultraviolet: Theory and Predicted Performance,” Appl. Opt. 20, 3027–3034 (1981).
[CrossRef] [PubMed]

Walker, A. B. C.

A. B. C. Walker, T. W. Barbee, R. B. Hoover, J. F. Lindblom, “Soft X-Ray Images of the Solar Corona with a Normal-Incidence Cassegrain Multilayer Telescope,” Science, 241, 1781–1787 (1988).
[CrossRef] [PubMed]

Windt, D. L.

D. L. Windt, J. B. Kortright, “XUV Optical Characterization of Thin Film and Multilayer Reflectors,” Proc. Soc. Photo-Opt. Instrum. Eng. 1160, 246–250 (1989).

Zabrodin, I. G.

S. V. Gaponov, V. V. Dubrov, I. G. Zabrodin, A. I. Kuzmichev, B. M. Luskin, N. N. Salashchenko, “Multilayer Normal-Incidence Mirrors for the Wavelength Interval 125–200 Å,” Sov. Tech. Phys. Lett. 13, 87–89 (1987).

Zigler, A.

C. M. Brown, U. Feldman, J. J. Seely, M. C. Richardson, H. Chen, J. H. Underwood, A. Zigler, “Imaging of Laser-Produced Plasmas at 44 Å Using a Multilayer Mirror,” Opt. Commun. 68, 190–195 (1988).
[CrossRef]

Zwicker, A. P.

AIP Conference Proceedings No. 75 (1)

B. L. Henke, “Low Energy X-Ray Spectroscopy with Crystals and Multilayers,” AIP Conference Proceedings No. 75, 85 (1981).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

T. W. Barbee, P. Pianetto, R. Redaelli, R. Tatchyn, T. W. Barbee, “Molybdenum-Silicon Multilayer Monochromator for the Extreme Ultraviolet,” Appl. Phys. Lett., 50, 1841–1843 (1987).
[CrossRef]

Nucl. Instrum. Methods (1)

B. Day, J. Grosso, R. Bartlett, T. Barbee, “Layered Synthetic Microstructures: Measurements and Applications,” Nucl. Instrum. Methods 208, 245–249 (1983).
[CrossRef]

Opt. Commun. (1)

C. M. Brown, U. Feldman, J. J. Seely, M. C. Richardson, H. Chen, J. H. Underwood, A. Zigler, “Imaging of Laser-Produced Plasmas at 44 Å Using a Multilayer Mirror,” Opt. Commun. 68, 190–195 (1988).
[CrossRef]

Opt. Eng. (1)

P. Lee, R. J. Bartlett, D. R. Kania, “Soft X-Ray Optics Using Multilayer Mirrors,” Opt. Eng. 24, 197–201 (1985).
[CrossRef]

Opt. Lett. (1)

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

D. L. Windt, J. B. Kortright, “XUV Optical Characterization of Thin Film and Multilayer Reflectors,” Proc. Soc. Photo-Opt. Instrum. Eng. 1160, 246–250 (1989).

Science (1)

A. B. C. Walker, T. W. Barbee, R. B. Hoover, J. F. Lindblom, “Soft X-Ray Images of the Solar Corona with a Normal-Incidence Cassegrain Multilayer Telescope,” Science, 241, 1781–1787 (1988).
[CrossRef] [PubMed]

Sov. Tech. Phys. Lett. (1)

S. V. Gaponov, V. V. Dubrov, I. G. Zabrodin, A. I. Kuzmichev, B. M. Luskin, N. N. Salashchenko, “Multilayer Normal-Incidence Mirrors for the Wavelength Interval 125–200 Å,” Sov. Tech. Phys. Lett. 13, 87–89 (1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Comparison of the measured (solid lines) and calculated (dashed lines) Bragg peak position and wavelength bandpass for a Mo/Si MLM.

Fig. 2
Fig. 2

Measured peak reflectivity curves at different Bragg angles of a Mo/Si MLM. Curves are aspline fit of the data. Also shown are peak reflectivity values of similar mirrors in the literature. (⋄ Barbee et al.,8 p = 67%, 2d = 190.0 Å, N = 20; +Barbee et al.,8 p = 44%, 2d = 201.8 Å, N = 20; *Gaponov et al.,11 p = 21%, 2d = 194 Å, N = 20.)

Fig. 3
Fig. 3

Measured peak reflectivities at different Bragg angles of a Mo/B4C MLM (2d = 187.4 Å, N = 75) between 90 and 190 Å.

Fig. 4
Fig. 4

Measured peak reflectivities at different Bragg angles of a Mo/B4C MLM (2d = 141.8 Å, N = 60) between 90 and 140 Å.

Tables (2)

Tables Icon

Table I Corrected (P) and Uncorrected (p) Peak Reflectivitie s of W/C MLMs Using a Line Source

Tables Icon

Table II Peak Reflectivities and Bragg Angles of Mo/Si MLMs Using Synchrotron Radiation

Metrics