Abstract

A study of moderate resolution (1 cm−1) atmospheric transmission measurements made over a 5.7-km path and under a wide range of temperatures and humidities is presented. A description of the Fourier interferometric transmissometer (FIT) used for this study and a detailed analysis of the experimental protocol developed for that type of instrument are given. Results for the 2.8–5.5-μm spectral window are compared to calculations using the lowtran6 and fascod2 transmission codes. We examine the accuracy with which these codes predict transmittance in spectral domains (1800–2000 and 3200–3500 cm−1) strongly affected by water vapor concentration. Preliminary analysis, indicates that although lowtran6 predicts well the summer transmittance (+30.3° C) there are significant divergences for the winter case (−21.4° C). The comparison of fascod2 with experimental results shows much closer agreement than lowtran6 for both summer and winter cases.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere,” AFCRL-72-0497, (1972).
  2. F. X. Kneizys et al., “Atmospheric Transmittance/Radiance: Computer code lowtran6,” AFGL-TR-83-0187 (1983).
  3. S. A. Clough, F. X. Kneizys, L. S. Rothman, W. O. Gallery, “Atmospheric Spectral Transmittance and Radiance: fascod1b,” Proc. Soc. Photo-Opt. Instrum. Eng. 277, 152–166 (1981).
  4. W. L. Ridgway, R. A. Moose, A. C. Cogley, “Atmospheric Transmittance/Radiance Computer code fascod2,” AFGL-TR-82-0392, (1982).
  5. A. D. Devir et al., “Experimental Validation of Atmospheric Transmittance Codes,” Proc. Soc. Photo-Opt. Instrum. Eng. 926, 54–64 (1988).
  6. K. M. Haught, J. A. Dowling, “Long-Path High-Resolution Field Measurements of Absolute Transmission in the 3.5 to 4.0-μm Atmospheric Window,” Opt. Lett. 1, 121–123 (1977).
    [CrossRef] [PubMed]
  7. D. R. Cutten, “Instrumentation for Investigating the Propagation of Infrared Radiation over Long Atmospheric Paths,” Infrared Phys. 19, 81–92 (1979).
    [CrossRef]
  8. A. Ben-Shalom, D. Cabib, A. D. Devir, D. Goldschmidt, S. G. Lipson, U. P. Oppenheim, “Spectral Characteristics of Infrared Transmittance of the Atmosphere in the region 2.8–14 μm—Preliminary Measurements,” Infrared Phys. 20, 165–174 (1980).
    [CrossRef]
  9. J.-M. Thériault, P. L. Roney, F. Reid, A. Kohnle, “Temperature Dependence of Atmospheric Transmittance in the 2.8–5.5-μm Region,” presented at the Soc. Photo-Opt. Instrum. Eng. Propagation Engineering Conference, Orlando, 27–31 March 1989.
  10. F. Reid, J.-M. Thériault, P. L. Roney, “Comparison of the lowtran and fascode Codes at Extreme Temperature in the 3-5 μm Region: A Preliminary Study,” DREV M-2994/89 (1989).
  11. S. F. Johnston, H. L. Buijs, “Final Report Phase I: Design, Development and Construction of a Fourier Interferometric Transmissometer (FIT),” Bomem Inc. (1982).
  12. W. J. Smith, Modern Optical Engineering (McGraw-Hill, New York, 1966).
  13. J.-M. Thériault, P. L. Roney, “Absolute Calibration of the Fourier Interferometric Transmissometer,” DREV R-4522/88 (1988).
  14. L. S. Rothman et al., “The hitran Database: 1986 Edition,” Appl. Opt. 26, 4058–4097 (1987).
    [CrossRef] [PubMed]

1989 (1)

F. Reid, J.-M. Thériault, P. L. Roney, “Comparison of the lowtran and fascode Codes at Extreme Temperature in the 3-5 μm Region: A Preliminary Study,” DREV M-2994/89 (1989).

1988 (1)

A. D. Devir et al., “Experimental Validation of Atmospheric Transmittance Codes,” Proc. Soc. Photo-Opt. Instrum. Eng. 926, 54–64 (1988).

1987 (1)

1983 (1)

F. X. Kneizys et al., “Atmospheric Transmittance/Radiance: Computer code lowtran6,” AFGL-TR-83-0187 (1983).

1982 (1)

W. L. Ridgway, R. A. Moose, A. C. Cogley, “Atmospheric Transmittance/Radiance Computer code fascod2,” AFGL-TR-82-0392, (1982).

1981 (1)

S. A. Clough, F. X. Kneizys, L. S. Rothman, W. O. Gallery, “Atmospheric Spectral Transmittance and Radiance: fascod1b,” Proc. Soc. Photo-Opt. Instrum. Eng. 277, 152–166 (1981).

1980 (1)

A. Ben-Shalom, D. Cabib, A. D. Devir, D. Goldschmidt, S. G. Lipson, U. P. Oppenheim, “Spectral Characteristics of Infrared Transmittance of the Atmosphere in the region 2.8–14 μm—Preliminary Measurements,” Infrared Phys. 20, 165–174 (1980).
[CrossRef]

1979 (1)

D. R. Cutten, “Instrumentation for Investigating the Propagation of Infrared Radiation over Long Atmospheric Paths,” Infrared Phys. 19, 81–92 (1979).
[CrossRef]

1977 (1)

1972 (1)

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere,” AFCRL-72-0497, (1972).

Ben-Shalom, A.

A. Ben-Shalom, D. Cabib, A. D. Devir, D. Goldschmidt, S. G. Lipson, U. P. Oppenheim, “Spectral Characteristics of Infrared Transmittance of the Atmosphere in the region 2.8–14 μm—Preliminary Measurements,” Infrared Phys. 20, 165–174 (1980).
[CrossRef]

Buijs, H. L.

S. F. Johnston, H. L. Buijs, “Final Report Phase I: Design, Development and Construction of a Fourier Interferometric Transmissometer (FIT),” Bomem Inc. (1982).

Cabib, D.

A. Ben-Shalom, D. Cabib, A. D. Devir, D. Goldschmidt, S. G. Lipson, U. P. Oppenheim, “Spectral Characteristics of Infrared Transmittance of the Atmosphere in the region 2.8–14 μm—Preliminary Measurements,” Infrared Phys. 20, 165–174 (1980).
[CrossRef]

Clough, S. A.

S. A. Clough, F. X. Kneizys, L. S. Rothman, W. O. Gallery, “Atmospheric Spectral Transmittance and Radiance: fascod1b,” Proc. Soc. Photo-Opt. Instrum. Eng. 277, 152–166 (1981).

Cogley, A. C.

W. L. Ridgway, R. A. Moose, A. C. Cogley, “Atmospheric Transmittance/Radiance Computer code fascod2,” AFGL-TR-82-0392, (1982).

Cutten, D. R.

D. R. Cutten, “Instrumentation for Investigating the Propagation of Infrared Radiation over Long Atmospheric Paths,” Infrared Phys. 19, 81–92 (1979).
[CrossRef]

Devir, A. D.

A. D. Devir et al., “Experimental Validation of Atmospheric Transmittance Codes,” Proc. Soc. Photo-Opt. Instrum. Eng. 926, 54–64 (1988).

A. Ben-Shalom, D. Cabib, A. D. Devir, D. Goldschmidt, S. G. Lipson, U. P. Oppenheim, “Spectral Characteristics of Infrared Transmittance of the Atmosphere in the region 2.8–14 μm—Preliminary Measurements,” Infrared Phys. 20, 165–174 (1980).
[CrossRef]

Dowling, J. A.

Fenn, R. W.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere,” AFCRL-72-0497, (1972).

Gallery, W. O.

S. A. Clough, F. X. Kneizys, L. S. Rothman, W. O. Gallery, “Atmospheric Spectral Transmittance and Radiance: fascod1b,” Proc. Soc. Photo-Opt. Instrum. Eng. 277, 152–166 (1981).

Garing, J. S.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere,” AFCRL-72-0497, (1972).

Goldschmidt, D.

A. Ben-Shalom, D. Cabib, A. D. Devir, D. Goldschmidt, S. G. Lipson, U. P. Oppenheim, “Spectral Characteristics of Infrared Transmittance of the Atmosphere in the region 2.8–14 μm—Preliminary Measurements,” Infrared Phys. 20, 165–174 (1980).
[CrossRef]

Haught, K. M.

Johnston, S. F.

S. F. Johnston, H. L. Buijs, “Final Report Phase I: Design, Development and Construction of a Fourier Interferometric Transmissometer (FIT),” Bomem Inc. (1982).

Kneizys, F. X.

F. X. Kneizys et al., “Atmospheric Transmittance/Radiance: Computer code lowtran6,” AFGL-TR-83-0187 (1983).

S. A. Clough, F. X. Kneizys, L. S. Rothman, W. O. Gallery, “Atmospheric Spectral Transmittance and Radiance: fascod1b,” Proc. Soc. Photo-Opt. Instrum. Eng. 277, 152–166 (1981).

Kohnle, A.

J.-M. Thériault, P. L. Roney, F. Reid, A. Kohnle, “Temperature Dependence of Atmospheric Transmittance in the 2.8–5.5-μm Region,” presented at the Soc. Photo-Opt. Instrum. Eng. Propagation Engineering Conference, Orlando, 27–31 March 1989.

Lipson, S. G.

A. Ben-Shalom, D. Cabib, A. D. Devir, D. Goldschmidt, S. G. Lipson, U. P. Oppenheim, “Spectral Characteristics of Infrared Transmittance of the Atmosphere in the region 2.8–14 μm—Preliminary Measurements,” Infrared Phys. 20, 165–174 (1980).
[CrossRef]

McClatchey, R. A.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere,” AFCRL-72-0497, (1972).

Moose, R. A.

W. L. Ridgway, R. A. Moose, A. C. Cogley, “Atmospheric Transmittance/Radiance Computer code fascod2,” AFGL-TR-82-0392, (1982).

Oppenheim, U. P.

A. Ben-Shalom, D. Cabib, A. D. Devir, D. Goldschmidt, S. G. Lipson, U. P. Oppenheim, “Spectral Characteristics of Infrared Transmittance of the Atmosphere in the region 2.8–14 μm—Preliminary Measurements,” Infrared Phys. 20, 165–174 (1980).
[CrossRef]

Reid, F.

F. Reid, J.-M. Thériault, P. L. Roney, “Comparison of the lowtran and fascode Codes at Extreme Temperature in the 3-5 μm Region: A Preliminary Study,” DREV M-2994/89 (1989).

J.-M. Thériault, P. L. Roney, F. Reid, A. Kohnle, “Temperature Dependence of Atmospheric Transmittance in the 2.8–5.5-μm Region,” presented at the Soc. Photo-Opt. Instrum. Eng. Propagation Engineering Conference, Orlando, 27–31 March 1989.

Ridgway, W. L.

W. L. Ridgway, R. A. Moose, A. C. Cogley, “Atmospheric Transmittance/Radiance Computer code fascod2,” AFGL-TR-82-0392, (1982).

Roney, P. L.

F. Reid, J.-M. Thériault, P. L. Roney, “Comparison of the lowtran and fascode Codes at Extreme Temperature in the 3-5 μm Region: A Preliminary Study,” DREV M-2994/89 (1989).

J.-M. Thériault, P. L. Roney, F. Reid, A. Kohnle, “Temperature Dependence of Atmospheric Transmittance in the 2.8–5.5-μm Region,” presented at the Soc. Photo-Opt. Instrum. Eng. Propagation Engineering Conference, Orlando, 27–31 March 1989.

J.-M. Thériault, P. L. Roney, “Absolute Calibration of the Fourier Interferometric Transmissometer,” DREV R-4522/88 (1988).

Rothman, L. S.

L. S. Rothman et al., “The hitran Database: 1986 Edition,” Appl. Opt. 26, 4058–4097 (1987).
[CrossRef] [PubMed]

S. A. Clough, F. X. Kneizys, L. S. Rothman, W. O. Gallery, “Atmospheric Spectral Transmittance and Radiance: fascod1b,” Proc. Soc. Photo-Opt. Instrum. Eng. 277, 152–166 (1981).

Selby, J. E. A.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere,” AFCRL-72-0497, (1972).

Smith, W. J.

W. J. Smith, Modern Optical Engineering (McGraw-Hill, New York, 1966).

Thériault, J.-M.

F. Reid, J.-M. Thériault, P. L. Roney, “Comparison of the lowtran and fascode Codes at Extreme Temperature in the 3-5 μm Region: A Preliminary Study,” DREV M-2994/89 (1989).

J.-M. Thériault, P. L. Roney, “Absolute Calibration of the Fourier Interferometric Transmissometer,” DREV R-4522/88 (1988).

J.-M. Thériault, P. L. Roney, F. Reid, A. Kohnle, “Temperature Dependence of Atmospheric Transmittance in the 2.8–5.5-μm Region,” presented at the Soc. Photo-Opt. Instrum. Eng. Propagation Engineering Conference, Orlando, 27–31 March 1989.

Volz, F. E.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere,” AFCRL-72-0497, (1972).

AFCRL-72-0497 (1)

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere,” AFCRL-72-0497, (1972).

AFGL-TR-82-0392 (1)

W. L. Ridgway, R. A. Moose, A. C. Cogley, “Atmospheric Transmittance/Radiance Computer code fascod2,” AFGL-TR-82-0392, (1982).

AFGL-TR-83-0187 (1)

F. X. Kneizys et al., “Atmospheric Transmittance/Radiance: Computer code lowtran6,” AFGL-TR-83-0187 (1983).

Appl. Opt. (1)

DREV M-2994/89 (1)

F. Reid, J.-M. Thériault, P. L. Roney, “Comparison of the lowtran and fascode Codes at Extreme Temperature in the 3-5 μm Region: A Preliminary Study,” DREV M-2994/89 (1989).

Infrared Phys. (2)

D. R. Cutten, “Instrumentation for Investigating the Propagation of Infrared Radiation over Long Atmospheric Paths,” Infrared Phys. 19, 81–92 (1979).
[CrossRef]

A. Ben-Shalom, D. Cabib, A. D. Devir, D. Goldschmidt, S. G. Lipson, U. P. Oppenheim, “Spectral Characteristics of Infrared Transmittance of the Atmosphere in the region 2.8–14 μm—Preliminary Measurements,” Infrared Phys. 20, 165–174 (1980).
[CrossRef]

Opt. Lett. (1)

Proc. Soc. Photo-Opt. Instrum. Eng. (2)

S. A. Clough, F. X. Kneizys, L. S. Rothman, W. O. Gallery, “Atmospheric Spectral Transmittance and Radiance: fascod1b,” Proc. Soc. Photo-Opt. Instrum. Eng. 277, 152–166 (1981).

A. D. Devir et al., “Experimental Validation of Atmospheric Transmittance Codes,” Proc. Soc. Photo-Opt. Instrum. Eng. 926, 54–64 (1988).

Other (4)

S. F. Johnston, H. L. Buijs, “Final Report Phase I: Design, Development and Construction of a Fourier Interferometric Transmissometer (FIT),” Bomem Inc. (1982).

W. J. Smith, Modern Optical Engineering (McGraw-Hill, New York, 1966).

J.-M. Thériault, P. L. Roney, “Absolute Calibration of the Fourier Interferometric Transmissometer,” DREV R-4522/88 (1988).

J.-M. Thériault, P. L. Roney, F. Reid, A. Kohnle, “Temperature Dependence of Atmospheric Transmittance in the 2.8–5.5-μm Region,” presented at the Soc. Photo-Opt. Instrum. Eng. Propagation Engineering Conference, Orlando, 27–31 March 1989.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Schematic representation of the receiver optics.

Fig. 2
Fig. 2

Raw interferogram (a) and the Fourier transform spectrum (b) of the distant source.

Fig. 3
Fig. 3

Fourier transform spectrum of the reference source.

Fig. 4
Fig. 4

Representative results of atmospheric transmittance measurements for three different conditions of ambient temperature and humidity: (a) winter case, (b) autumn case and (c) summer case. Visibilities were evaluated to be better than 24 km.

Fig. 5
Fig. 5

Measured spectral response S(ν) of the wideband transmissometer.

Fig. 6
Fig. 6

Comparison of simultaneous transmittance measurements (3.4–4.1 μm) performed on the 5.7-km range between Feb. and Dec. 1988 with the wideband transmissometer and the FIT.

Fig. 7
Fig. 7

1750–1950 cm−1 spectral region of moderate resolution (1 cm−1) atmospheric transmittance measurements on the 5.7-km range performed in winter 1988 compared with fascod2 predictions. For fascod2 calculations visibilities were adjusted to match the experimental curve at 2684 cm−1. Note that for this spectral region the transmittance is negligible in the summer.

Fig. 8
Fig. 8

1950–2150 cm−1 spectral region of moderate resolution (1 cm−1) atmospheric transmittance measurements on the 5.7-km range performed in winter 1988 (a) and in summer 1988 (b) compared with fascod2 predictions. For fascod2 calculations visibilities were adjusted to match the experimental curve at 2684 cm−1.

Fig. 9
Fig. 9

2150–2350 cm−1 spectral region of moderate resolution (1 cm−1) atmospheric transmittance measurements on the 5.7-km range performed in winter 1988 (a) and in summer 1988 (b) compared with fascod2 predictions. For fascod2 calculations visibilities were adjusted to match the experimental curve at 2684 cm−1.

Fig. 10
Fig. 10

2350–2550 cm−1 spectral region of moderate resolution (1 cm−1) atmospheric transmittance measurements on the 5.7-km range performed in winter 1988 (a) and in summer 1988 (b) compared with fascod2 predictions. For fascod2 calculations visibilities were adjusted to match the experimental curve at 2684 cm−1.

Fig. 11
Fig. 11

2550–2750 cm−1 spectral region of moderate resolution (1 cm−1) atmospheric transmittance measurements on the 5.7-km range performed in winter 1988 (a) and in summer 1988 (b) compared with fascod2 predictions. For fascod2 calculations visibilities were adjusted to match the experimental curve at 2684 cm−1.

Fig. 12
Fig. 12

2750–2950 cm−1 spectral region of moderate resolution (1 cm−1) atmospheric transmittance measurements on the 5.7-km range performed in winter 1988 (a) and in summer 1988 (b) compared with fascod2 predictions. For fascod2 calculations visibilities were adjusted to match the experimental curve at 2684 cm−1.

Fig. 13
Fig. 13

2950–3150 cm−1 spectral region of moderate resolution (1 cm−1) atmospheric transmittance measurements on the 5.7-km range performed in winter 1988 (a) and in summer 1988 (b) compared with fascod2 predictions. For fascod2 calculations visibilities were adjusted to match the experimental curve at 2684 cm−1.

Fig. 14
Fig. 14

3150–3350 cm−1 spectral region of moderate resolution (1 cm−1) atmospheric transmittance measurements on the 5.7-km range performed in winter 1988 (a) and in summer 1988 (b) compared with fascod2 predictions. For fascod2 calculations visibilities were adjusted to match the experimental curve at 2684 cm−1.

Fig. 15
Fig. 15

3350–3550 cm−1 spectral region of moderate resolution (1 cm−1) atmospheric transmittance measurements on the 5.7-km range performed in winter 1988 compared with fascod2 predictions. For fascod2 calculations visibilities were adjusted to match the experimental curve at 2684 cm−1. Note that for this spectral region the transmittance is negligible in the summer.

Fig. 16
Fig. 16

Atmospheric transmittance calculated at 20-cm−1 resolution with models compared to summer (a) and winter (b) measurements made on the 5.7-km range. For model calculations visibilities were adjusted to match experimental curves at 2684 cm−1: For the summer case the lowtran6 and fascod2 visibilities were equal to 13 km and for the winter case they were equal to 35 and 19.7 km respectively.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

N ( ν ) = T ( ν ) N ( ν ) ,
N mb ( ν ) = T sys ( ν ) R 3 ( ν ) T atm ( ν ) N mb ( ν ) ,
N loc ( ν ) = T sys ( ν ) R 2 ( ν ) N loc ( ν ) ,
N loc ( ν ) = c 1 ν 3 exp ( c 2 ν / t ) - 1 ,
P loc ( ν ) = N loc ( ν ) A ap Ω sys ,
P d ( ν ) = N mb ( ν ) A d Ω sys ,
h d = D m d ( f 1 f 3 f 2 ) ,
A d = A m d 2 ( f 1 f 3 f 2 ) 2 ,
P d ( ν ) P loc ( ν ) = R ( ν ) d 2 A m A ap ( f 1 f 3 f 2 ) 2 N mb ( ν ) N loc ( ν ) T atm ( ν ) ,
K ( ν ) = R ( ν ) d 2 A m A ap ( f 1 f 3 f 2 ) 2 N mb ( ν ) N loc ( ν ) ,
T atm ( ν ) = 1 K ( ν ) P d ( ν ) P loc ( ν ) ,
N mb ( ν ) = R ( ν ) c 1 ν 3 exp ( c 2 ν / t ) - 1 .
N mb ( ν ) = R ( ν ) c 1 ν 3 exp ( c 2 ν / t ) - 1 Q ,
R Q = P mb ( ν ) P b ( ν ) A b A m ,
P ( ν ) = - + I ( δ ) exp ( - 2 π ν δ ) d δ
P ( ν ) = 2 0 L I ( δ ) cos ( 2 π ν δ ) d ν ,
H A ( δ ) = 0.53856 + 0.46144 cos ( 2 π δ )
T wb = ν 1 ν 2 T ( ν ) S ( ν ) d ν ν 1 ν 2 S ( ν ) d ν ,

Metrics