Abstract

The pulse spreading resulting from light detection and ranging measurements of the range to earth-orbiting is described. An analysis quantifying this pulse spreading and the calculation of corrections to be satellites to the lidar range determination of satellites is detailed.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Edge, P. J. Shelus, S. K. Tatevian, Eds., Satellite Laser Ranging Newsletter, SLR Subcommission of the International Coordination of Space Techniques for Geodesy and Geodynamics, Center for Space Research, U. Texas at Austin (June1989).
  2. D. E. Smith, “Lasers for Geodesy in the Year 2000,” presented at the Fall Meeting of the American Geophysical Union, San Francisco, 1987; and the NRC Committee on Geodesy, Mar. 1988.
  3. T. K. Varghese, “Sub-cm Multiphotoelectron Satellite Laser Ranging,” Bendix Field Engineering Corp. Report, Goddard Space Flight Center (Apr.1985).
  4. J. J. Degnan, “Satellite Laser Ranging: Current Status and Future Prospects,” IEEE Trans. Geosci. Remote Senging GE-23, 398–413 (1985).
    [CrossRef]
  5. J. A. Schwartz, “Studies of Laser Ranging to the TOPEX Satellite,” Proc. Soc. Photo-Opt. Instrum. Eng. 885, 172–179 (1988).
  6. P. O. Minott, “Design of Retrodirector Arrays for Laser Ranging of Satellites,” Publication X-723-74-122, Goddard Space Flight Center, Greenbelt, MD (Mar.1974).

1988 (1)

J. A. Schwartz, “Studies of Laser Ranging to the TOPEX Satellite,” Proc. Soc. Photo-Opt. Instrum. Eng. 885, 172–179 (1988).

1985 (1)

J. J. Degnan, “Satellite Laser Ranging: Current Status and Future Prospects,” IEEE Trans. Geosci. Remote Senging GE-23, 398–413 (1985).
[CrossRef]

Degnan, J. J.

J. J. Degnan, “Satellite Laser Ranging: Current Status and Future Prospects,” IEEE Trans. Geosci. Remote Senging GE-23, 398–413 (1985).
[CrossRef]

Minott, P. O.

P. O. Minott, “Design of Retrodirector Arrays for Laser Ranging of Satellites,” Publication X-723-74-122, Goddard Space Flight Center, Greenbelt, MD (Mar.1974).

Schwartz, J. A.

J. A. Schwartz, “Studies of Laser Ranging to the TOPEX Satellite,” Proc. Soc. Photo-Opt. Instrum. Eng. 885, 172–179 (1988).

Smith, D. E.

D. E. Smith, “Lasers for Geodesy in the Year 2000,” presented at the Fall Meeting of the American Geophysical Union, San Francisco, 1987; and the NRC Committee on Geodesy, Mar. 1988.

Varghese, T. K.

T. K. Varghese, “Sub-cm Multiphotoelectron Satellite Laser Ranging,” Bendix Field Engineering Corp. Report, Goddard Space Flight Center (Apr.1985).

IEEE Trans. Geosci. Remote Senging (1)

J. J. Degnan, “Satellite Laser Ranging: Current Status and Future Prospects,” IEEE Trans. Geosci. Remote Senging GE-23, 398–413 (1985).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

J. A. Schwartz, “Studies of Laser Ranging to the TOPEX Satellite,” Proc. Soc. Photo-Opt. Instrum. Eng. 885, 172–179 (1988).

Other (4)

P. O. Minott, “Design of Retrodirector Arrays for Laser Ranging of Satellites,” Publication X-723-74-122, Goddard Space Flight Center, Greenbelt, MD (Mar.1974).

D. Edge, P. J. Shelus, S. K. Tatevian, Eds., Satellite Laser Ranging Newsletter, SLR Subcommission of the International Coordination of Space Techniques for Geodesy and Geodynamics, Center for Space Research, U. Texas at Austin (June1989).

D. E. Smith, “Lasers for Geodesy in the Year 2000,” presented at the Fall Meeting of the American Geophysical Union, San Francisco, 1987; and the NRC Committee on Geodesy, Mar. 1988.

T. K. Varghese, “Sub-cm Multiphotoelectron Satellite Laser Ranging,” Bendix Field Engineering Corp. Report, Goddard Space Flight Center (Apr.1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Laser pulse spreading by a LRA.

Fig. 2
Fig. 2

TOPEX/POSEIDON nadir panel with LRA and altimeter antenna.

Fig. 3
Fig. 3

Laser ranging geometry for an annular LRA.

Fig. 4
Fig. 4

CCR range correction geometry.

Fig. 5
Fig. 5

Effective plane of reflection due to CCR position.

Fig. 6
Fig. 6

Lidar return pulse from TOPEX/POSEIDON at zenith.

Fig. 7
Fig. 7

Lidar return pulse from TOPEX/POSEIDON at 85° elevation.

Fig. 8
Fig. 8

Lidar return pulse from TOPEX/POSEIDON at 20° elevation.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

F [ 0 t f ( t ) g ( t - τ ) d τ ] = F ( α ) × G ( α ) ,
F ( α ) = F [ f ( t ) ] ,
G ( α ) = F [ g ( t ) ] ,
f ( t ) = A 1 exp ( - t 2 2 σ 1 2 ) and g ( t ) = A 2 exp ( - t 2 2 σ 2 2 ) .
F ( α ) = A 1 2 2 π σ 1 exp ( - α 2 σ 1 2 2 ) ,
G ( α ) = A 2 2 2 π σ 2 exp ( - α 2 σ 2 2 2 ) .
F ( α ) × G ( α ) = A 1 A 2 2 π σ 1 σ 2 exp [ - α 2 2 ( σ 1 2 + σ 2 2 ) ] .
F - 1 [ F ( α ) × G ( α ) ] = 0 t f ( t ) g ( t - τ ) d τ = A 1 A 2 π 2 σ 1 σ 2 ( σ 1 2 + σ 2 2 ) exp [ - t 2 2 ( σ 1 2 + σ 2 2 ) ] .
A 1 A 2 π 2 σ 1 σ 2 ( σ 1 2 + σ 2 2 ) ,
σ 1 2 + σ 2 2 ,
A = 2 r 2 [ sin - 1 μ - 2 μ tan ( i ) ] cos ( i ) ,
μ = 1 - 2 tan 2 ( i ) ,
d = 2 2 w ,
2 R c + 2 d n c ,
measured range = [ 2 R c + 2 d n c ] · c 2 = R + d n .
R + d n + range correction .
range correction = p n cos ( ζ ) cos ( π 2 - γ ) - y n cos ( γ ) + d n ,
γ = sin - 1 [ sin θ z ( 1 + h R e ) ] ,

Metrics