Abstract

The characteristics of various detector responses are studied to understand the cause of various systematic biases and to minimize these undesirable effects in measurements of transient signals with large dynamic range. We quantitatively evaluated signal induced bias, gain variation, and the linearity of commonly used gated photomultipliers in the current integrating mode. Analysis of the results indicates that impurity ions inside the photomultiplier tube are the source of the signal induced bias and gain variation. Two different photomultiplier tubes used in this study show significant differences in the magnitude and decay behavior of signal induced bias. We found it can be minimized by using an external amplifier to reduce PMT gain, and by applying a low potential between the cathode and first dynode. The linearity of a photomultiplier tube is also studied over a large dynamic range of input intensities employing a new technique which does not require an absolute calibration. The result of this study shows that the photomultiplier response is linear only for a limited input intensity range below a certain anode current.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Fenster, J. C. Leblanc, W. B. Taylor, H. E. Johns, “Linearity and Fatigue in Photomultipliers,” Rev. Sci. Instrum. 44, 689–694 (1973).
    [CrossRef]
  2. W. H. Hunt, S. K. Poultney, “Testing the Linearity of Response of Gated Photomultipliers in Wide Dynamic Range Laser Radar Systems,” IEEE Trans. Nucl. Sci. NS22, 116–120 (1975).
    [CrossRef]
  3. H. J. Lush, “Photomultiplier Linearity,” J. Sci. Instrum. 42, 597–602 (1965).
    [CrossRef]
  4. D. H. Hartman, “Pulse Mode Saturation Properties of Photomultiplier Tubes,” Rev. Sci. Instrum. 49, 1130–1133 (1978).
    [CrossRef] [PubMed]
  5. P. L. Land, “A Discussion of the Region of Linear Operation of Photomultipliers,” Rev. Sci. Instrum. 42, 420–425 (1971).
    [CrossRef]
  6. J. P. Keen, “Fatigue and Saturation in Photomultipliers,” Rev. Sci. Instrum. 34, 1220–1222 (1963).
    [CrossRef]
  7. E. Pitz, “Nonlinearity Measurements on Photometric Devices,” Appl. Opt. 18, 1360–1362 (1979).
    [CrossRef] [PubMed]
  8. C. L. Sanders, “Accurate Measurements of and Correction for Nonlinearities in Radiometers,” J. Res. Nat. Bur. Stand. 76A, 437–453 (1972).
    [CrossRef]
  9. P. B. Coates, “The Origin of Afterpulses in Photomultipliers,” J. Phys. D: Appl. Phys. 6, 1159–1166 (1973).
    [CrossRef]
  10. P. B. Coates, “A Theory of Afterpulse Formation in Photomultipliers and the Pulse Height Distribution,” J. Phys. D: Appl. Phys. 6, 1862–1869 (1973).
    [CrossRef]
  11. R. J. Riley, A. G. Wright, “The Effect of Photomultiplier Afterpulse in Coincidence Systems,” J. Phys. E 10, 873–874 (1977).
    [CrossRef]
  12. M. Yamashita, O. Yura, Y. Kawada, “Probability and Time Distribution of Afterpulses in GaP First Dynode Photomultiplier Tubes,” Nucl. Instrum. and Meth. 196, 199–202 (1982).
    [CrossRef]
  13. D. P. Jones, G. S. Kent, “Measurement of Overload Effect in a Photomultiplier,” J. Phys. E 7, 744–746 (1974).
    [CrossRef]
  14. G. A. Akopdzhanov, A. V. Inyakin, P. S. Shuvalov, “Photomultiplier Short-term Instability,” Nuclear Instruments and Methods 161, 247–257 (1979).
    [CrossRef]
  15. B. H. Candy, “Photomultiplier Characteristics and Practice Relevant to Photon Counting,” Rev. Sci. Instrum. 56, 183–193 (1985).
    [CrossRef]
  16. M. L. Mead, “Instrumentation Aspects of Photon Counting Applied to Photometry,” J. Phys. E: Sci. Instrum. 14, 909–918 (1981).
    [CrossRef]
  17. G. K. Schwemmer, M. Dombrowski, C. L. Korb, J. Milrod, H. Walden, R. H. Kagann, “A Lidar System for Measuring Atmospheric Pressure and Temperature Profile,” Rev. Sci. Instrum. 58, 2226–2237 (1987).
    [CrossRef]
  18. A. E. Siegman, Lasers (University Science Books, Mill Valley, CA, 1986).
  19. C. L. Korb, G. K. Schwemmer, M. Dombrowski, C. Y. Weng, “Airborne and Ground Based Lidar Measurements of the Atmospheric Pressure Profile,” Appl. Opt. 28, 3015–3020 (1989).
    [CrossRef] [PubMed]
  20. C. L. Korb, C. Y. Weng, “A Theoretical Study of a Two Wavelength Lidar Technique for the Measurement of Atmospheric Temperature Profiles,” J. Appl. Meteorol. 21, 1346–1355 (1982).
    [CrossRef]
  21. H. S. W. Massey, E. H. S. Burhop, Electronic and Ionic Impact Phenomena, Vol. 1 (Clarendon, Oxford, U.K., 1969), Chap. 3.
  22. Ya. B. Zeldovich, Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic, New York, 1966).
  23. J. D. W. Barrick, “Gating Characteristics of Photomultiplier Tubes for Lidar Applications,” NASA Tech Memo. 8769S (1986).

1989 (1)

1987 (1)

G. K. Schwemmer, M. Dombrowski, C. L. Korb, J. Milrod, H. Walden, R. H. Kagann, “A Lidar System for Measuring Atmospheric Pressure and Temperature Profile,” Rev. Sci. Instrum. 58, 2226–2237 (1987).
[CrossRef]

1986 (1)

J. D. W. Barrick, “Gating Characteristics of Photomultiplier Tubes for Lidar Applications,” NASA Tech Memo. 8769S (1986).

1985 (1)

B. H. Candy, “Photomultiplier Characteristics and Practice Relevant to Photon Counting,” Rev. Sci. Instrum. 56, 183–193 (1985).
[CrossRef]

1982 (2)

M. Yamashita, O. Yura, Y. Kawada, “Probability and Time Distribution of Afterpulses in GaP First Dynode Photomultiplier Tubes,” Nucl. Instrum. and Meth. 196, 199–202 (1982).
[CrossRef]

C. L. Korb, C. Y. Weng, “A Theoretical Study of a Two Wavelength Lidar Technique for the Measurement of Atmospheric Temperature Profiles,” J. Appl. Meteorol. 21, 1346–1355 (1982).
[CrossRef]

1981 (1)

M. L. Mead, “Instrumentation Aspects of Photon Counting Applied to Photometry,” J. Phys. E: Sci. Instrum. 14, 909–918 (1981).
[CrossRef]

1979 (2)

G. A. Akopdzhanov, A. V. Inyakin, P. S. Shuvalov, “Photomultiplier Short-term Instability,” Nuclear Instruments and Methods 161, 247–257 (1979).
[CrossRef]

E. Pitz, “Nonlinearity Measurements on Photometric Devices,” Appl. Opt. 18, 1360–1362 (1979).
[CrossRef] [PubMed]

1978 (1)

D. H. Hartman, “Pulse Mode Saturation Properties of Photomultiplier Tubes,” Rev. Sci. Instrum. 49, 1130–1133 (1978).
[CrossRef] [PubMed]

1977 (1)

R. J. Riley, A. G. Wright, “The Effect of Photomultiplier Afterpulse in Coincidence Systems,” J. Phys. E 10, 873–874 (1977).
[CrossRef]

1975 (1)

W. H. Hunt, S. K. Poultney, “Testing the Linearity of Response of Gated Photomultipliers in Wide Dynamic Range Laser Radar Systems,” IEEE Trans. Nucl. Sci. NS22, 116–120 (1975).
[CrossRef]

1974 (1)

D. P. Jones, G. S. Kent, “Measurement of Overload Effect in a Photomultiplier,” J. Phys. E 7, 744–746 (1974).
[CrossRef]

1973 (3)

A. Fenster, J. C. Leblanc, W. B. Taylor, H. E. Johns, “Linearity and Fatigue in Photomultipliers,” Rev. Sci. Instrum. 44, 689–694 (1973).
[CrossRef]

P. B. Coates, “The Origin of Afterpulses in Photomultipliers,” J. Phys. D: Appl. Phys. 6, 1159–1166 (1973).
[CrossRef]

P. B. Coates, “A Theory of Afterpulse Formation in Photomultipliers and the Pulse Height Distribution,” J. Phys. D: Appl. Phys. 6, 1862–1869 (1973).
[CrossRef]

1972 (1)

C. L. Sanders, “Accurate Measurements of and Correction for Nonlinearities in Radiometers,” J. Res. Nat. Bur. Stand. 76A, 437–453 (1972).
[CrossRef]

1971 (1)

P. L. Land, “A Discussion of the Region of Linear Operation of Photomultipliers,” Rev. Sci. Instrum. 42, 420–425 (1971).
[CrossRef]

1965 (1)

H. J. Lush, “Photomultiplier Linearity,” J. Sci. Instrum. 42, 597–602 (1965).
[CrossRef]

1963 (1)

J. P. Keen, “Fatigue and Saturation in Photomultipliers,” Rev. Sci. Instrum. 34, 1220–1222 (1963).
[CrossRef]

Akopdzhanov, G. A.

G. A. Akopdzhanov, A. V. Inyakin, P. S. Shuvalov, “Photomultiplier Short-term Instability,” Nuclear Instruments and Methods 161, 247–257 (1979).
[CrossRef]

Barrick, J. D. W.

J. D. W. Barrick, “Gating Characteristics of Photomultiplier Tubes for Lidar Applications,” NASA Tech Memo. 8769S (1986).

Burhop, E. H. S.

H. S. W. Massey, E. H. S. Burhop, Electronic and Ionic Impact Phenomena, Vol. 1 (Clarendon, Oxford, U.K., 1969), Chap. 3.

Candy, B. H.

B. H. Candy, “Photomultiplier Characteristics and Practice Relevant to Photon Counting,” Rev. Sci. Instrum. 56, 183–193 (1985).
[CrossRef]

Coates, P. B.

P. B. Coates, “The Origin of Afterpulses in Photomultipliers,” J. Phys. D: Appl. Phys. 6, 1159–1166 (1973).
[CrossRef]

P. B. Coates, “A Theory of Afterpulse Formation in Photomultipliers and the Pulse Height Distribution,” J. Phys. D: Appl. Phys. 6, 1862–1869 (1973).
[CrossRef]

Dombrowski, M.

C. L. Korb, G. K. Schwemmer, M. Dombrowski, C. Y. Weng, “Airborne and Ground Based Lidar Measurements of the Atmospheric Pressure Profile,” Appl. Opt. 28, 3015–3020 (1989).
[CrossRef] [PubMed]

G. K. Schwemmer, M. Dombrowski, C. L. Korb, J. Milrod, H. Walden, R. H. Kagann, “A Lidar System for Measuring Atmospheric Pressure and Temperature Profile,” Rev. Sci. Instrum. 58, 2226–2237 (1987).
[CrossRef]

Fenster, A.

A. Fenster, J. C. Leblanc, W. B. Taylor, H. E. Johns, “Linearity and Fatigue in Photomultipliers,” Rev. Sci. Instrum. 44, 689–694 (1973).
[CrossRef]

Hartman, D. H.

D. H. Hartman, “Pulse Mode Saturation Properties of Photomultiplier Tubes,” Rev. Sci. Instrum. 49, 1130–1133 (1978).
[CrossRef] [PubMed]

Hunt, W. H.

W. H. Hunt, S. K. Poultney, “Testing the Linearity of Response of Gated Photomultipliers in Wide Dynamic Range Laser Radar Systems,” IEEE Trans. Nucl. Sci. NS22, 116–120 (1975).
[CrossRef]

Inyakin, A. V.

G. A. Akopdzhanov, A. V. Inyakin, P. S. Shuvalov, “Photomultiplier Short-term Instability,” Nuclear Instruments and Methods 161, 247–257 (1979).
[CrossRef]

Johns, H. E.

A. Fenster, J. C. Leblanc, W. B. Taylor, H. E. Johns, “Linearity and Fatigue in Photomultipliers,” Rev. Sci. Instrum. 44, 689–694 (1973).
[CrossRef]

Jones, D. P.

D. P. Jones, G. S. Kent, “Measurement of Overload Effect in a Photomultiplier,” J. Phys. E 7, 744–746 (1974).
[CrossRef]

Kagann, R. H.

G. K. Schwemmer, M. Dombrowski, C. L. Korb, J. Milrod, H. Walden, R. H. Kagann, “A Lidar System for Measuring Atmospheric Pressure and Temperature Profile,” Rev. Sci. Instrum. 58, 2226–2237 (1987).
[CrossRef]

Kawada, Y.

M. Yamashita, O. Yura, Y. Kawada, “Probability and Time Distribution of Afterpulses in GaP First Dynode Photomultiplier Tubes,” Nucl. Instrum. and Meth. 196, 199–202 (1982).
[CrossRef]

Keen, J. P.

J. P. Keen, “Fatigue and Saturation in Photomultipliers,” Rev. Sci. Instrum. 34, 1220–1222 (1963).
[CrossRef]

Kent, G. S.

D. P. Jones, G. S. Kent, “Measurement of Overload Effect in a Photomultiplier,” J. Phys. E 7, 744–746 (1974).
[CrossRef]

Korb, C. L.

C. L. Korb, G. K. Schwemmer, M. Dombrowski, C. Y. Weng, “Airborne and Ground Based Lidar Measurements of the Atmospheric Pressure Profile,” Appl. Opt. 28, 3015–3020 (1989).
[CrossRef] [PubMed]

G. K. Schwemmer, M. Dombrowski, C. L. Korb, J. Milrod, H. Walden, R. H. Kagann, “A Lidar System for Measuring Atmospheric Pressure and Temperature Profile,” Rev. Sci. Instrum. 58, 2226–2237 (1987).
[CrossRef]

C. L. Korb, C. Y. Weng, “A Theoretical Study of a Two Wavelength Lidar Technique for the Measurement of Atmospheric Temperature Profiles,” J. Appl. Meteorol. 21, 1346–1355 (1982).
[CrossRef]

Land, P. L.

P. L. Land, “A Discussion of the Region of Linear Operation of Photomultipliers,” Rev. Sci. Instrum. 42, 420–425 (1971).
[CrossRef]

Leblanc, J. C.

A. Fenster, J. C. Leblanc, W. B. Taylor, H. E. Johns, “Linearity and Fatigue in Photomultipliers,” Rev. Sci. Instrum. 44, 689–694 (1973).
[CrossRef]

Lush, H. J.

H. J. Lush, “Photomultiplier Linearity,” J. Sci. Instrum. 42, 597–602 (1965).
[CrossRef]

Massey, H. S. W.

H. S. W. Massey, E. H. S. Burhop, Electronic and Ionic Impact Phenomena, Vol. 1 (Clarendon, Oxford, U.K., 1969), Chap. 3.

Mead, M. L.

M. L. Mead, “Instrumentation Aspects of Photon Counting Applied to Photometry,” J. Phys. E: Sci. Instrum. 14, 909–918 (1981).
[CrossRef]

Milrod, J.

G. K. Schwemmer, M. Dombrowski, C. L. Korb, J. Milrod, H. Walden, R. H. Kagann, “A Lidar System for Measuring Atmospheric Pressure and Temperature Profile,” Rev. Sci. Instrum. 58, 2226–2237 (1987).
[CrossRef]

Pitz, E.

Poultney, S. K.

W. H. Hunt, S. K. Poultney, “Testing the Linearity of Response of Gated Photomultipliers in Wide Dynamic Range Laser Radar Systems,” IEEE Trans. Nucl. Sci. NS22, 116–120 (1975).
[CrossRef]

Raizer, Yu. P.

Ya. B. Zeldovich, Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic, New York, 1966).

Riley, R. J.

R. J. Riley, A. G. Wright, “The Effect of Photomultiplier Afterpulse in Coincidence Systems,” J. Phys. E 10, 873–874 (1977).
[CrossRef]

Sanders, C. L.

C. L. Sanders, “Accurate Measurements of and Correction for Nonlinearities in Radiometers,” J. Res. Nat. Bur. Stand. 76A, 437–453 (1972).
[CrossRef]

Schwemmer, G. K.

C. L. Korb, G. K. Schwemmer, M. Dombrowski, C. Y. Weng, “Airborne and Ground Based Lidar Measurements of the Atmospheric Pressure Profile,” Appl. Opt. 28, 3015–3020 (1989).
[CrossRef] [PubMed]

G. K. Schwemmer, M. Dombrowski, C. L. Korb, J. Milrod, H. Walden, R. H. Kagann, “A Lidar System for Measuring Atmospheric Pressure and Temperature Profile,” Rev. Sci. Instrum. 58, 2226–2237 (1987).
[CrossRef]

Shuvalov, P. S.

G. A. Akopdzhanov, A. V. Inyakin, P. S. Shuvalov, “Photomultiplier Short-term Instability,” Nuclear Instruments and Methods 161, 247–257 (1979).
[CrossRef]

Siegman, A. E.

A. E. Siegman, Lasers (University Science Books, Mill Valley, CA, 1986).

Taylor, W. B.

A. Fenster, J. C. Leblanc, W. B. Taylor, H. E. Johns, “Linearity and Fatigue in Photomultipliers,” Rev. Sci. Instrum. 44, 689–694 (1973).
[CrossRef]

Walden, H.

G. K. Schwemmer, M. Dombrowski, C. L. Korb, J. Milrod, H. Walden, R. H. Kagann, “A Lidar System for Measuring Atmospheric Pressure and Temperature Profile,” Rev. Sci. Instrum. 58, 2226–2237 (1987).
[CrossRef]

Weng, C. Y.

C. L. Korb, G. K. Schwemmer, M. Dombrowski, C. Y. Weng, “Airborne and Ground Based Lidar Measurements of the Atmospheric Pressure Profile,” Appl. Opt. 28, 3015–3020 (1989).
[CrossRef] [PubMed]

C. L. Korb, C. Y. Weng, “A Theoretical Study of a Two Wavelength Lidar Technique for the Measurement of Atmospheric Temperature Profiles,” J. Appl. Meteorol. 21, 1346–1355 (1982).
[CrossRef]

Wright, A. G.

R. J. Riley, A. G. Wright, “The Effect of Photomultiplier Afterpulse in Coincidence Systems,” J. Phys. E 10, 873–874 (1977).
[CrossRef]

Yamashita, M.

M. Yamashita, O. Yura, Y. Kawada, “Probability and Time Distribution of Afterpulses in GaP First Dynode Photomultiplier Tubes,” Nucl. Instrum. and Meth. 196, 199–202 (1982).
[CrossRef]

Yura, O.

M. Yamashita, O. Yura, Y. Kawada, “Probability and Time Distribution of Afterpulses in GaP First Dynode Photomultiplier Tubes,” Nucl. Instrum. and Meth. 196, 199–202 (1982).
[CrossRef]

Zeldovich, Ya. B.

Ya. B. Zeldovich, Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic, New York, 1966).

Appl. Opt. (2)

IEEE Trans. Nucl. Sci. (1)

W. H. Hunt, S. K. Poultney, “Testing the Linearity of Response of Gated Photomultipliers in Wide Dynamic Range Laser Radar Systems,” IEEE Trans. Nucl. Sci. NS22, 116–120 (1975).
[CrossRef]

J. Appl. Meteorol. (1)

C. L. Korb, C. Y. Weng, “A Theoretical Study of a Two Wavelength Lidar Technique for the Measurement of Atmospheric Temperature Profiles,” J. Appl. Meteorol. 21, 1346–1355 (1982).
[CrossRef]

J. Phys. D: Appl. Phys. (2)

P. B. Coates, “The Origin of Afterpulses in Photomultipliers,” J. Phys. D: Appl. Phys. 6, 1159–1166 (1973).
[CrossRef]

P. B. Coates, “A Theory of Afterpulse Formation in Photomultipliers and the Pulse Height Distribution,” J. Phys. D: Appl. Phys. 6, 1862–1869 (1973).
[CrossRef]

J. Phys. E (2)

R. J. Riley, A. G. Wright, “The Effect of Photomultiplier Afterpulse in Coincidence Systems,” J. Phys. E 10, 873–874 (1977).
[CrossRef]

D. P. Jones, G. S. Kent, “Measurement of Overload Effect in a Photomultiplier,” J. Phys. E 7, 744–746 (1974).
[CrossRef]

J. Phys. E: Sci. Instrum. (1)

M. L. Mead, “Instrumentation Aspects of Photon Counting Applied to Photometry,” J. Phys. E: Sci. Instrum. 14, 909–918 (1981).
[CrossRef]

J. Res. Nat. Bur. Stand. (1)

C. L. Sanders, “Accurate Measurements of and Correction for Nonlinearities in Radiometers,” J. Res. Nat. Bur. Stand. 76A, 437–453 (1972).
[CrossRef]

J. Sci. Instrum. (1)

H. J. Lush, “Photomultiplier Linearity,” J. Sci. Instrum. 42, 597–602 (1965).
[CrossRef]

NASA Tech Memo. 8769S (1)

J. D. W. Barrick, “Gating Characteristics of Photomultiplier Tubes for Lidar Applications,” NASA Tech Memo. 8769S (1986).

Nucl. Instrum. and Meth. (1)

M. Yamashita, O. Yura, Y. Kawada, “Probability and Time Distribution of Afterpulses in GaP First Dynode Photomultiplier Tubes,” Nucl. Instrum. and Meth. 196, 199–202 (1982).
[CrossRef]

Nuclear Instruments and Methods (1)

G. A. Akopdzhanov, A. V. Inyakin, P. S. Shuvalov, “Photomultiplier Short-term Instability,” Nuclear Instruments and Methods 161, 247–257 (1979).
[CrossRef]

Rev. Sci. Instrum. (6)

B. H. Candy, “Photomultiplier Characteristics and Practice Relevant to Photon Counting,” Rev. Sci. Instrum. 56, 183–193 (1985).
[CrossRef]

D. H. Hartman, “Pulse Mode Saturation Properties of Photomultiplier Tubes,” Rev. Sci. Instrum. 49, 1130–1133 (1978).
[CrossRef] [PubMed]

P. L. Land, “A Discussion of the Region of Linear Operation of Photomultipliers,” Rev. Sci. Instrum. 42, 420–425 (1971).
[CrossRef]

J. P. Keen, “Fatigue and Saturation in Photomultipliers,” Rev. Sci. Instrum. 34, 1220–1222 (1963).
[CrossRef]

A. Fenster, J. C. Leblanc, W. B. Taylor, H. E. Johns, “Linearity and Fatigue in Photomultipliers,” Rev. Sci. Instrum. 44, 689–694 (1973).
[CrossRef]

G. K. Schwemmer, M. Dombrowski, C. L. Korb, J. Milrod, H. Walden, R. H. Kagann, “A Lidar System for Measuring Atmospheric Pressure and Temperature Profile,” Rev. Sci. Instrum. 58, 2226–2237 (1987).
[CrossRef]

Other (3)

A. E. Siegman, Lasers (University Science Books, Mill Valley, CA, 1986).

H. S. W. Massey, E. H. S. Burhop, Electronic and Ionic Impact Phenomena, Vol. 1 (Clarendon, Oxford, U.K., 1969), Chap. 3.

Ya. B. Zeldovich, Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic, New York, 1966).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1

Typical example of airborne lidar signals showing the online and off-line laser pulses. Notice the strong ground return signal.

Fig. 2
Fig. 2

Schematic of experimental setup SF, spatial filter, L1 and L2: lens 1 and 2, ND, neutral density filter, BS, beam splitter, M1 and M2, mirror 1 and 2, PMT1, test photomultiplier, PMT2, trigger photomultiplier.

Fig. 3
Fig. 3

Measured pulse profile at low output signal level.

Fig. 4
Fig. 4

Test photomultiplier base circuit diagram.

Fig. 5
Fig. 5

PMT-A output signal amplitude vs time for various PMT dynode voltages (Vpmt), for a 3-mW light intensity.

Fig. 6
Fig. 6

PMT-A signal induced bias vs PMT dynode voltage at various times t after the pulse peak for a pulse peak intensity of 3 mW. The signal induced current is large immediately (3.3-μsec delay) following the signal pulse and decays rapidly after that. It also increases with PMT gain, and hence the PMT current.

Fig. 7
Fig. 7

PMT-A signal induced bias vs idealized peak anode current for two intensity levels and three delay times. The solid line is for a peak intensity of 3 mW and the dotted line is for 2.4 mW.

Fig. 8
Fig. 8

PMT-A signal induced bias decay profiles for two different dynode capacitor values. A, original capacitor values shown in Fig. 4, B, 1/2 of the original capacitor values.

Fig. 9
Fig. 9

PMT-B output signal amplitude vs time for two PMT dynode voltages where the pulse peak intensity is 3 mW.

Fig. 10
Fig. 10

PMT-B signal induced bias vs PMT dynode voltage at various times t after the pulse peak (pulse peak intensity is 3 mW).

Fig. 11
Fig. 11

PMT-B signal induced bias vs idealized peak anode current for various delay times and two intensity levels. The solid line is for a peak intensity of 3 mW and the dotted line is for 0.3 mW.

Fig. 12
Fig. 12

PMT-B signal induced bias decay profiles for various PMT voltages.

Fig. 13
Fig. 13

Hamamatsu microchannel plate signal induced bias vs idealized peak anode current at various times after the pulse peak.

Fig. 14
Fig. 14

Timing diagram for the gain stability experiment.

Fig. 15
Fig. 15

PMT gain variation vs PMT voltage at various intensity levels.

Fig. 16
Fig. 16

PMT-A saturation behavior: PMT gain variation vs PMT voltage.

Fig. 17
Fig. 17

Percent gain variation vs anode current at various intensity levels.

Fig. 18
Fig. 18

Ratio of two output signals corresponding to input intensities of I(S1) and I/2(S2) as a function of input intensity for a full scale I0 value of 3 mW.

Tables (1)

Tables Icon

Table I PMT Characteristics

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

W = f λ / ( π W 0 ) ,

Metrics