Abstract

The characteristics of various detector responses are studied to understand the cause of various systematic biases and to minimize these undesirable effects in measurements of transient signals with large dynamic range. We quantitatively evaluated signal induced bias, gain variation, and the linearity of commonly used gated photomultipliers in the current integrating mode. Analysis of the results indicates that impurity ions inside the photomultiplier tube are the source of the signal induced bias and gain variation. Two different photomultiplier tubes used in this study show significant differences in the magnitude and decay behavior of signal induced bias. We found it can be minimized by using an external amplifier to reduce PMT gain, and by applying a low potential between the cathode and first dynode. The linearity of a photomultiplier tube is also studied over a large dynamic range of input intensities employing a new technique which does not require an absolute calibration. The result of this study shows that the photomultiplier response is linear only for a limited input intensity range below a certain anode current.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (18)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription