Abstract

The absorption, refraction, and scattering properties of several UV transmitting acrylics have been investigated over the wavelength range 300–700 nm using a combination of near-normal incidence regular transmittance and reflectance and diffuse-only reflectance measurements, followed by a Fresnel and a Kubelka-Munk analysis. The samples were evaluated in the as-cast and thermoformed forms, and both before and after an accelerated aging procedure. The results show significant differences in the optical behavior of the various acrylics in the UV region and stress the importance of carefully characterizing acrylic from different sources for each intended use. In our case, acrylic is the proposed material for a heavy water containment vessel for the detection of solar neutrinos. The significance of our findings to the overall performance of this Cerenkov detector, known as the Sudbury neutrino observatory detector, is discussed.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Sudbury Neutrino Observatory ProposalG. T. Ewan et al., October1987, unpublished: G. Aardsma et al., “A Heavy Water Detector to Resolve the Solar Neutrino Problem,” Phys. Lett. B 194, 321–325 (1987).
    [CrossRef]
  2. L. P. Boivin, W. F. Davidson, R. S. Storey, D. Sinclair, E. D. Earle, “Determination of the Attenuation Coefficients of Visible and Ultraviolet Radiation in Heavy Water,” Appl. Opt. 25, 877–882 (1986).
    [CrossRef] [PubMed]
  3. N. J. Mills, “Optical Properties” section, Encyclopedia of Polymer Science and Technology (Interscience, New York, 1987), Vol. 10, p. 493.
  4. B. Crist, M. Marhic, “Light-Scattering and Absorption by Glassy Poly(Methyl Methacrylate) (PMMA) and Polystyrene (PS),” Proc. Photo-Opt. Instrum. Engr. 297, 169–172 (1981).
  5. R. W. Jans, “Acrylic Polymers for Optical Applications,” Proc. Photo-Opt. Instrum. Engr. 204, 2–10 (1979).
  6. R. G. Griskey, “Optical and Mechanical Behavior of Polymers,” Proc. Photo-Opt. Instrum. Engr. 204, 11–18 (1979).
  7. K. Hume et al., “20 Inch Diameter Photomultiplier,” Nucl. Instrum. Methods, 205, 443–449 (1983).
    [CrossRef]
  8. H. H. Kausch, J. G. Williams, “Fracture and Fatigue” section, Encyclopedia of Polymer Science and Engineering (Wiley Interscience, New York, 1987), Vol. 7, p. 328; P. I. Vincent, “Fracture” section, Encyclopedia of Polymer Science and Technology (Wiley Interscience, 1st Edition, New York) Vol. 7, p. 261.
  9. “Selecting Plastics for Chemical Resistance,” section Modern Plastics Encyclopedia (McGraw Hill, New York, 1986–1987), Vol. 63, pp 419–424.
  10. J. D. Stachiw, Acrylic Plastic Viewports–Ocean Engineering and Other Hyperbaric Applications, Ocean Engineering Series, N. T. Monney, Ed., Naval Ocean Systems Center, (Marcel Dekker Inc, New York, 1982).
  11. Y. Lu, A. Penzhofer, “Optical Constants Measurements of Strongly Absorbing Media,” Appl. Opt. 25, 221–225 (1986).
    [CrossRef] [PubMed]
  12. R.-J. Roe, “Glass Transition,” section, Encyclopedia of Polymer Science and Technology (Wiley Interscience, New York, 1987), Vol. 7, p. 531.
  13. S. Glasstone, Textbook of Physical Chemistry (D. Van Nostrand, New York, 1946), p. 1087.
  14. E. Denton, R. D. Campbell, S. G. Tomlin, “The Determination of the Optical Constants of Thin Films from Measurements of Reflectance and Transmittance at Normal Incidence,” J. Phys. D 5, 852–863 (1972).
    [CrossRef]
  15. A. Hjortsberg, “Determination of Optical Constants of Absorbing Materials Using Transmission and Reflection of Thin Films on Partially Metallized Substrates: Analysis of the New (T,Rm) Technique,” Appl. Opt. 20, 1254–1263 (1981).
    [CrossRef] [PubMed]
  16. W. W. Wendlandt, H. G. Hecht, in Reflectance Spectroscopy, Chap. III, Theory II—“Diffuse Reflectance,” (Interscience, New York, 1966).
  17. G. Kortum, W. Braun, G. Herzog, “Principles and Techniques of Diffuse-Reflectance Spectroscopy,” Angew. Chem. Int. Ed. Engl. 2, 333–341 (1963).
    [CrossRef]
  18. J. N. Etters, M. D. Hurwitz, “Opaque Reflectance of Translucent Fabric,” Text. Chem. Color. 18(6), 19–26 (1986).
  19. J. C. Zwinkels, C. X. Dodd, “Determination of Spectrophotometer Polarization and its Application to Rapid Accurate Polarized Transmission Measurements,” Appl. Opt. 28, 2381–2388 (1989).
    [CrossRef] [PubMed]
  20. R. M. Glen, “Polymeric Optical Fiber,” Chematronics 1, 98–106 (1986).
  21. R. M. Altman, J. D. Lytle, “Optical Design Techniques for Polymer Optics,” Proc. Phot. Opt. Instrum. Engr. 237, 380–385 (1980).

1989 (1)

1986 (4)

1983 (1)

K. Hume et al., “20 Inch Diameter Photomultiplier,” Nucl. Instrum. Methods, 205, 443–449 (1983).
[CrossRef]

1981 (2)

A. Hjortsberg, “Determination of Optical Constants of Absorbing Materials Using Transmission and Reflection of Thin Films on Partially Metallized Substrates: Analysis of the New (T,Rm) Technique,” Appl. Opt. 20, 1254–1263 (1981).
[CrossRef] [PubMed]

B. Crist, M. Marhic, “Light-Scattering and Absorption by Glassy Poly(Methyl Methacrylate) (PMMA) and Polystyrene (PS),” Proc. Photo-Opt. Instrum. Engr. 297, 169–172 (1981).

1980 (1)

R. M. Altman, J. D. Lytle, “Optical Design Techniques for Polymer Optics,” Proc. Phot. Opt. Instrum. Engr. 237, 380–385 (1980).

1979 (2)

R. W. Jans, “Acrylic Polymers for Optical Applications,” Proc. Photo-Opt. Instrum. Engr. 204, 2–10 (1979).

R. G. Griskey, “Optical and Mechanical Behavior of Polymers,” Proc. Photo-Opt. Instrum. Engr. 204, 11–18 (1979).

1972 (1)

E. Denton, R. D. Campbell, S. G. Tomlin, “The Determination of the Optical Constants of Thin Films from Measurements of Reflectance and Transmittance at Normal Incidence,” J. Phys. D 5, 852–863 (1972).
[CrossRef]

1963 (1)

G. Kortum, W. Braun, G. Herzog, “Principles and Techniques of Diffuse-Reflectance Spectroscopy,” Angew. Chem. Int. Ed. Engl. 2, 333–341 (1963).
[CrossRef]

Altman, R. M.

R. M. Altman, J. D. Lytle, “Optical Design Techniques for Polymer Optics,” Proc. Phot. Opt. Instrum. Engr. 237, 380–385 (1980).

Boivin, L. P.

Braun, W.

G. Kortum, W. Braun, G. Herzog, “Principles and Techniques of Diffuse-Reflectance Spectroscopy,” Angew. Chem. Int. Ed. Engl. 2, 333–341 (1963).
[CrossRef]

Campbell, R. D.

E. Denton, R. D. Campbell, S. G. Tomlin, “The Determination of the Optical Constants of Thin Films from Measurements of Reflectance and Transmittance at Normal Incidence,” J. Phys. D 5, 852–863 (1972).
[CrossRef]

Crist, B.

B. Crist, M. Marhic, “Light-Scattering and Absorption by Glassy Poly(Methyl Methacrylate) (PMMA) and Polystyrene (PS),” Proc. Photo-Opt. Instrum. Engr. 297, 169–172 (1981).

Davidson, W. F.

Denton, E.

E. Denton, R. D. Campbell, S. G. Tomlin, “The Determination of the Optical Constants of Thin Films from Measurements of Reflectance and Transmittance at Normal Incidence,” J. Phys. D 5, 852–863 (1972).
[CrossRef]

Dodd, C. X.

Earle, E. D.

Etters, J. N.

J. N. Etters, M. D. Hurwitz, “Opaque Reflectance of Translucent Fabric,” Text. Chem. Color. 18(6), 19–26 (1986).

Ewan, G. T.

Sudbury Neutrino Observatory ProposalG. T. Ewan et al., October1987, unpublished: G. Aardsma et al., “A Heavy Water Detector to Resolve the Solar Neutrino Problem,” Phys. Lett. B 194, 321–325 (1987).
[CrossRef]

Glasstone, S.

S. Glasstone, Textbook of Physical Chemistry (D. Van Nostrand, New York, 1946), p. 1087.

Glen, R. M.

R. M. Glen, “Polymeric Optical Fiber,” Chematronics 1, 98–106 (1986).

Griskey, R. G.

R. G. Griskey, “Optical and Mechanical Behavior of Polymers,” Proc. Photo-Opt. Instrum. Engr. 204, 11–18 (1979).

Hecht, H. G.

W. W. Wendlandt, H. G. Hecht, in Reflectance Spectroscopy, Chap. III, Theory II—“Diffuse Reflectance,” (Interscience, New York, 1966).

Herzog, G.

G. Kortum, W. Braun, G. Herzog, “Principles and Techniques of Diffuse-Reflectance Spectroscopy,” Angew. Chem. Int. Ed. Engl. 2, 333–341 (1963).
[CrossRef]

Hjortsberg, A.

Hume, K.

K. Hume et al., “20 Inch Diameter Photomultiplier,” Nucl. Instrum. Methods, 205, 443–449 (1983).
[CrossRef]

Hurwitz, M. D.

J. N. Etters, M. D. Hurwitz, “Opaque Reflectance of Translucent Fabric,” Text. Chem. Color. 18(6), 19–26 (1986).

Jans, R. W.

R. W. Jans, “Acrylic Polymers for Optical Applications,” Proc. Photo-Opt. Instrum. Engr. 204, 2–10 (1979).

Kausch, H. H.

H. H. Kausch, J. G. Williams, “Fracture and Fatigue” section, Encyclopedia of Polymer Science and Engineering (Wiley Interscience, New York, 1987), Vol. 7, p. 328; P. I. Vincent, “Fracture” section, Encyclopedia of Polymer Science and Technology (Wiley Interscience, 1st Edition, New York) Vol. 7, p. 261.

Kortum, G.

G. Kortum, W. Braun, G. Herzog, “Principles and Techniques of Diffuse-Reflectance Spectroscopy,” Angew. Chem. Int. Ed. Engl. 2, 333–341 (1963).
[CrossRef]

Lu, Y.

Lytle, J. D.

R. M. Altman, J. D. Lytle, “Optical Design Techniques for Polymer Optics,” Proc. Phot. Opt. Instrum. Engr. 237, 380–385 (1980).

Marhic, M.

B. Crist, M. Marhic, “Light-Scattering and Absorption by Glassy Poly(Methyl Methacrylate) (PMMA) and Polystyrene (PS),” Proc. Photo-Opt. Instrum. Engr. 297, 169–172 (1981).

Mills, N. J.

N. J. Mills, “Optical Properties” section, Encyclopedia of Polymer Science and Technology (Interscience, New York, 1987), Vol. 10, p. 493.

Penzhofer, A.

Roe, R.-J.

R.-J. Roe, “Glass Transition,” section, Encyclopedia of Polymer Science and Technology (Wiley Interscience, New York, 1987), Vol. 7, p. 531.

Sinclair, D.

Stachiw, J. D.

J. D. Stachiw, Acrylic Plastic Viewports–Ocean Engineering and Other Hyperbaric Applications, Ocean Engineering Series, N. T. Monney, Ed., Naval Ocean Systems Center, (Marcel Dekker Inc, New York, 1982).

Storey, R. S.

Tomlin, S. G.

E. Denton, R. D. Campbell, S. G. Tomlin, “The Determination of the Optical Constants of Thin Films from Measurements of Reflectance and Transmittance at Normal Incidence,” J. Phys. D 5, 852–863 (1972).
[CrossRef]

Wendlandt, W. W.

W. W. Wendlandt, H. G. Hecht, in Reflectance Spectroscopy, Chap. III, Theory II—“Diffuse Reflectance,” (Interscience, New York, 1966).

Williams, J. G.

H. H. Kausch, J. G. Williams, “Fracture and Fatigue” section, Encyclopedia of Polymer Science and Engineering (Wiley Interscience, New York, 1987), Vol. 7, p. 328; P. I. Vincent, “Fracture” section, Encyclopedia of Polymer Science and Technology (Wiley Interscience, 1st Edition, New York) Vol. 7, p. 261.

Zwinkels, J. C.

Angew. Chem. Int. Ed. Engl. (1)

G. Kortum, W. Braun, G. Herzog, “Principles and Techniques of Diffuse-Reflectance Spectroscopy,” Angew. Chem. Int. Ed. Engl. 2, 333–341 (1963).
[CrossRef]

Appl. Opt. (4)

Chematronics (1)

R. M. Glen, “Polymeric Optical Fiber,” Chematronics 1, 98–106 (1986).

J. Phys. D (1)

E. Denton, R. D. Campbell, S. G. Tomlin, “The Determination of the Optical Constants of Thin Films from Measurements of Reflectance and Transmittance at Normal Incidence,” J. Phys. D 5, 852–863 (1972).
[CrossRef]

Nucl. Instrum. Methods (1)

K. Hume et al., “20 Inch Diameter Photomultiplier,” Nucl. Instrum. Methods, 205, 443–449 (1983).
[CrossRef]

Proc. Phot. Opt. Instrum. Engr. (1)

R. M. Altman, J. D. Lytle, “Optical Design Techniques for Polymer Optics,” Proc. Phot. Opt. Instrum. Engr. 237, 380–385 (1980).

Proc. Photo-Opt. Instrum. Engr. (3)

B. Crist, M. Marhic, “Light-Scattering and Absorption by Glassy Poly(Methyl Methacrylate) (PMMA) and Polystyrene (PS),” Proc. Photo-Opt. Instrum. Engr. 297, 169–172 (1981).

R. W. Jans, “Acrylic Polymers for Optical Applications,” Proc. Photo-Opt. Instrum. Engr. 204, 2–10 (1979).

R. G. Griskey, “Optical and Mechanical Behavior of Polymers,” Proc. Photo-Opt. Instrum. Engr. 204, 11–18 (1979).

Text. Chem. Color. (1)

J. N. Etters, M. D. Hurwitz, “Opaque Reflectance of Translucent Fabric,” Text. Chem. Color. 18(6), 19–26 (1986).

Other (8)

W. W. Wendlandt, H. G. Hecht, in Reflectance Spectroscopy, Chap. III, Theory II—“Diffuse Reflectance,” (Interscience, New York, 1966).

Sudbury Neutrino Observatory ProposalG. T. Ewan et al., October1987, unpublished: G. Aardsma et al., “A Heavy Water Detector to Resolve the Solar Neutrino Problem,” Phys. Lett. B 194, 321–325 (1987).
[CrossRef]

R.-J. Roe, “Glass Transition,” section, Encyclopedia of Polymer Science and Technology (Wiley Interscience, New York, 1987), Vol. 7, p. 531.

S. Glasstone, Textbook of Physical Chemistry (D. Van Nostrand, New York, 1946), p. 1087.

N. J. Mills, “Optical Properties” section, Encyclopedia of Polymer Science and Technology (Interscience, New York, 1987), Vol. 10, p. 493.

H. H. Kausch, J. G. Williams, “Fracture and Fatigue” section, Encyclopedia of Polymer Science and Engineering (Wiley Interscience, New York, 1987), Vol. 7, p. 328; P. I. Vincent, “Fracture” section, Encyclopedia of Polymer Science and Technology (Wiley Interscience, 1st Edition, New York) Vol. 7, p. 261.

“Selecting Plastics for Chemical Resistance,” section Modern Plastics Encyclopedia (McGraw Hill, New York, 1986–1987), Vol. 63, pp 419–424.

J. D. Stachiw, Acrylic Plastic Viewports–Ocean Engineering and Other Hyperbaric Applications, Ocean Engineering Series, N. T. Monney, Ed., Naval Ocean Systems Center, (Marcel Dekker Inc, New York, 1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Conceptual design of proposed neutrino detector. The heavy water is contained in a cylindrical acrylic vessel and is shielded from activity in the rock by low activity concrete and light water. The Cerenkov radiation is detected by an array of photomultiplier tubes located in the light water. The dimensions of the cavity are 20 m diameter and 30 m height. The detector will be sited at a depth of 2070 m.

Fig. 2
Fig. 2

Absorption coefficients for unaged acrylic samples A, B, and C as determined using the (RT) method.

Fig. 3
Fig. 3

Absorption coefficients for acrylic sample A following aging in various liquids.

Fig. 4
Fig. 4

Absorption coefficients for acrylic samples B and C following aging in water.

Fig. 5
Fig. 5

Opaque diffuse reflectance, R, of unaged acrylic sample A from 300 to 700 nm as derived from one of the Kubelka-Munk solutions in which R0 is sample reflectance over black felt background, R is the sample reflectance over a white opal background, and Rg is reflectance of white opal glass. See text for further details.

Fig. 6
Fig. 6

Scattering coefficients for unaged acrylic sample A computed from Kubelka-Munk remission function and from α-data derived from (RT) analysis. See text for further details.

Fig. 7
Fig. 7

Absorption coefficients for blank and aged specimens of acrylic samples D and E.

Fig. 8
Fig. 8

Absorption coefficients for thermoformed blank and aged specimens of acrylic Sample D. BM and RF refer to whether the thermoforming took lace over bare metal or rubber flocked metal, respectively.

Fig. 9
Fig. 9

Absorption coefficients for thermoformed blank and aged specimens of acrylic sample E. BM and RF refer to whether the thermoforming took place over bare metal or rubber flocked metal, respectively.

Tables (2)

Tables Icon

Table I Comparison of UV Optical Constants Obtained for Unaged Acrylic Sample A by (RT) and(RTT′) Methodsa

Tables Icon

Table II Absorption and Scattering Coefficients for Sample A

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

R = ( n - 1 ) 2 + κ 2 ( n + 1 ) 2 + κ 2
T = exp ( - 4 π κ d λ ) ,
T = exp ( - α d ) .
T * = ( 1 - R ) 2 T 1 - R 2 T 2
R * = R ( 1 + T T * ) .
F ( R ) = α S = ( 1 - R ) 2 2 R .
R = a - ( a 2 - 1 ) 1 / 2 ,
a = 0.5 [ R + R 0 - R + R g R o R g ] ,
α α ° exp ( A λ ) ,

Metrics