Abstract

Airborne fluorosensor measurements over maritime oil spills show that this method enables a sensitive classification and quantification of surface films having a thickness in the 1-μm range. However, significant changes of the optical signature of oil occur in the presence of submicrometer films which are not yet fully understood. Possible reasons for this effect are discussed and the limitations of laser fluorosensing of small oil discharges are outlined.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. E. Hoge, R. N. Swift, “Airborne Detection of Oceanic Turbidity Cell Structure using Depth-Resolved Laser-Induced Water Raman Backscatter,” Appl. Opt. 22, 3778–3786 (1983).
    [CrossRef] [PubMed]
  2. M. P. F. Bristow, D. H. Bundy, C. M. Edmonds, P. E. Ponto, B. E. Frey, L. F. Small, “Airborne Laser Fluorosensor Survey of the Columbia and Snake Rivers: Simultaneous Measurements of Chlorophyll, Dissolved Organics and Optical Attenuation,” Int. J. Remote Sensing 6, 1707–1734 (1985).
    [CrossRef]
  3. R. J. Exton, W. M. Houghton, W. Esaias, R. C. Harriss, F. H. Farmer, H. H. White, “Laboratory Analysis of Techniques for Remote Sensing of Estuarine Parameters using Laser Excitation,” Appl. Opt. 22, 54–64 (1983).
    [CrossRef] [PubMed]
  4. A. D. Thruston, R. W. Knight, “Characterization of Crude and Residual-Type Oils by Fluorescence Spectroscopy,” Environ. Sci. Technol. 5, 64–69 (1971).
    [CrossRef]
  5. J. F. Fantasia, T. M. Hard, H. G. Ingrao, “An Investigation of Oil Fluorescence as a Technique for Remote Sensing of Oil Spills,” D.O.T. Transportation Systems Center, U.S. Coast Guard, Report TSC-USCG-71-7 (1971).
  6. R. T. V. Kung, I. Itzkan, “Absolute Oil Fluorescence Conversion Efficiency,” Appl. Opt. 15, 409–415 (1976).
    [CrossRef] [PubMed]
  7. F. E. Hoge, R. N. Swift, “Experimental Feasibility of the Airborne Measurement of Absolute Oil Fluorescence Spectral Conversion Efficiency,” Appl. Opt. 22, 37–46 (1983).
    [CrossRef] [PubMed]
  8. T. Sato, Y. Suzuki, H. Kashiwagi, M. Nanjo, Y. Kakui, “Laser Radar for Remote Detection of Oil Spills,” Appl. Opt. 17, 3798–3803 (1978).
    [CrossRef] [PubMed]
  9. R. A. O’Neil, L. Buja-Bijunas, D. M. Rayner, “Field Performance of a Laser Fluorosensor for the Detection of Oil Spills,” Appl. Opt. 19, 863–870 (1980).
    [CrossRef]
  10. J. Schwarz, “Consolidation of NRC Oil Spectra onto Single Magnetic Tape: NRCOIL” DAD Technical Note 1982-07, Canada Centre for Remote Sensing, Ottawa, Canada, 79 pp. (1982).
  11. P. Burlamacchi, G. Cecchi, P. Mazzinghi, L. Pantani, “Performance Evaluation of UV Sources for Lidar Fluorosensing of Oil Films,” Appl. Opt. 22, 48–53 (1983).
    [CrossRef] [PubMed]
  12. R. M. Measures, H. R. Houston, D. G. Stephenson, “Laser Induced Fluorescence Decay Spectra—a New Form of Environmental Signature,” Opt. Eng. 13, 494–501 (1974).
    [CrossRef]
  13. D. M. Rayner, A. G. Szabo, “Time-Resolved Laser Fluorosensors: a Laboratory Study of Their Potential in the Remote Characterization of Oil,” Appl. Opt. 17, 1624–1630 (1978).
    [CrossRef] [PubMed]
  14. P. Camagni, G. Colombo, C. Koechler, N. Omenetto, A. Pedrini, G. Rossi, “Remote Characterization of Mineral Oils by Laser Fluorosensing: Basic diagnostics and Simulation Experiments,” Commission of the European Communities, ISPRA Establishment (Varese, Italy), EUR 11781 EN (1988).
  15. D. Diebel, T. Hengstermann, R. Reuter, “Classification of Oil Types with Time-Resolved Fluorescence Signal Detection: a Computer Model Study,” in Remote Sensing of Pollution of the Sea, pp. 266–280. R. Reuter, R. H. Gillot Eds. Commission of the European Communities, ISPRA Establishment (Varese, Italy), and BIS University of Oldenburg (FR Germany), S.P.I.87.46, 555 pp. (1987).
  16. E. V. Browell, “Analysis of Laser Fluorosensor Systems for Remote Algae Detection and Quantification,” NASA Technical Note TN D-8447, 39 pp. (June1977).
  17. F. E. Hoge, R. N. Swift, “Oil Film Thickness Measurement Using Airborne Laser-Induced Water Raman Backscatter,” Appl. Opt. 193269–3281 (1980).
    [CrossRef] [PubMed]
  18. H. Visser, “Teledetection of the Thickness of Oil Films on Polluted Water Based on the Oil Fluorescence Properties,” Appl. Opt. 18, 1746–1749 (1979).
    [CrossRef] [PubMed]
  19. F. E. Hoge, “Oil Film Thickness Using Airborne Laser-Induced Oil Fluorescence Backscatter,” Appl. Opt. 22, 3316–3317 (1983).
    [CrossRef] [PubMed]
  20. D. Diebel-Langohr, T. Hengstermann, R. Reuter, “Water Depth Resolved Determination of Hydrographic Parameters from Airborne Lidar Measurements,” in Marine Interfaces Ecohydrodynamics, pp. 591–602, J. C. J. Nihoul, Ed. (Elsevier, Amsterdam, 1986) 670 pp.
  21. R. H. Schriel, Rijkswaterstaat, personal communication
  22. D. Diebel-Langohr, T. Hengstermann, R. Reuter, G. Cecchi, L. Pantani, “Measuring Oil at Sea by means of an Airborne Laser Fluorosensor,” in The Archimedes 1 Experiment, pp. 123–142. R. H. Gillot, F. Toselli, Eds., Commission of the European Communities, ISPRA Establishment, EUR 10216 EN, 223 pp. (1985).
  23. H. Hühnerfuss, W. D. Garrett, F. E. Hoge, “The Discrimination Between Crude Oil Spills and Monomolecular Sea Slicks by an Airborne Lidar,” Int. J. Remote Sensing 7, 137–150 (1986).
    [CrossRef]
  24. H. R. Gordon, “Interpretation of Airborne Oceanic Lidar: Effects of Multiple Scattering,” Appl. Opt. 21, 2996–3001 (1982).
    [CrossRef] [PubMed]

1988 (1)

P. Camagni, G. Colombo, C. Koechler, N. Omenetto, A. Pedrini, G. Rossi, “Remote Characterization of Mineral Oils by Laser Fluorosensing: Basic diagnostics and Simulation Experiments,” Commission of the European Communities, ISPRA Establishment (Varese, Italy), EUR 11781 EN (1988).

1986 (1)

H. Hühnerfuss, W. D. Garrett, F. E. Hoge, “The Discrimination Between Crude Oil Spills and Monomolecular Sea Slicks by an Airborne Lidar,” Int. J. Remote Sensing 7, 137–150 (1986).
[CrossRef]

1985 (1)

M. P. F. Bristow, D. H. Bundy, C. M. Edmonds, P. E. Ponto, B. E. Frey, L. F. Small, “Airborne Laser Fluorosensor Survey of the Columbia and Snake Rivers: Simultaneous Measurements of Chlorophyll, Dissolved Organics and Optical Attenuation,” Int. J. Remote Sensing 6, 1707–1734 (1985).
[CrossRef]

1983 (5)

1982 (1)

1980 (2)

1979 (1)

1978 (2)

1977 (1)

E. V. Browell, “Analysis of Laser Fluorosensor Systems for Remote Algae Detection and Quantification,” NASA Technical Note TN D-8447, 39 pp. (June1977).

1976 (1)

1974 (1)

R. M. Measures, H. R. Houston, D. G. Stephenson, “Laser Induced Fluorescence Decay Spectra—a New Form of Environmental Signature,” Opt. Eng. 13, 494–501 (1974).
[CrossRef]

1971 (1)

A. D. Thruston, R. W. Knight, “Characterization of Crude and Residual-Type Oils by Fluorescence Spectroscopy,” Environ. Sci. Technol. 5, 64–69 (1971).
[CrossRef]

Bristow, M. P. F.

M. P. F. Bristow, D. H. Bundy, C. M. Edmonds, P. E. Ponto, B. E. Frey, L. F. Small, “Airborne Laser Fluorosensor Survey of the Columbia and Snake Rivers: Simultaneous Measurements of Chlorophyll, Dissolved Organics and Optical Attenuation,” Int. J. Remote Sensing 6, 1707–1734 (1985).
[CrossRef]

Browell, E. V.

E. V. Browell, “Analysis of Laser Fluorosensor Systems for Remote Algae Detection and Quantification,” NASA Technical Note TN D-8447, 39 pp. (June1977).

Buja-Bijunas, L.

Bundy, D. H.

M. P. F. Bristow, D. H. Bundy, C. M. Edmonds, P. E. Ponto, B. E. Frey, L. F. Small, “Airborne Laser Fluorosensor Survey of the Columbia and Snake Rivers: Simultaneous Measurements of Chlorophyll, Dissolved Organics and Optical Attenuation,” Int. J. Remote Sensing 6, 1707–1734 (1985).
[CrossRef]

Burlamacchi, P.

Camagni, P.

P. Camagni, G. Colombo, C. Koechler, N. Omenetto, A. Pedrini, G. Rossi, “Remote Characterization of Mineral Oils by Laser Fluorosensing: Basic diagnostics and Simulation Experiments,” Commission of the European Communities, ISPRA Establishment (Varese, Italy), EUR 11781 EN (1988).

Cecchi, G.

P. Burlamacchi, G. Cecchi, P. Mazzinghi, L. Pantani, “Performance Evaluation of UV Sources for Lidar Fluorosensing of Oil Films,” Appl. Opt. 22, 48–53 (1983).
[CrossRef] [PubMed]

D. Diebel-Langohr, T. Hengstermann, R. Reuter, G. Cecchi, L. Pantani, “Measuring Oil at Sea by means of an Airborne Laser Fluorosensor,” in The Archimedes 1 Experiment, pp. 123–142. R. H. Gillot, F. Toselli, Eds., Commission of the European Communities, ISPRA Establishment, EUR 10216 EN, 223 pp. (1985).

Colombo, G.

P. Camagni, G. Colombo, C. Koechler, N. Omenetto, A. Pedrini, G. Rossi, “Remote Characterization of Mineral Oils by Laser Fluorosensing: Basic diagnostics and Simulation Experiments,” Commission of the European Communities, ISPRA Establishment (Varese, Italy), EUR 11781 EN (1988).

Diebel, D.

D. Diebel, T. Hengstermann, R. Reuter, “Classification of Oil Types with Time-Resolved Fluorescence Signal Detection: a Computer Model Study,” in Remote Sensing of Pollution of the Sea, pp. 266–280. R. Reuter, R. H. Gillot Eds. Commission of the European Communities, ISPRA Establishment (Varese, Italy), and BIS University of Oldenburg (FR Germany), S.P.I.87.46, 555 pp. (1987).

Diebel-Langohr, D.

D. Diebel-Langohr, T. Hengstermann, R. Reuter, G. Cecchi, L. Pantani, “Measuring Oil at Sea by means of an Airborne Laser Fluorosensor,” in The Archimedes 1 Experiment, pp. 123–142. R. H. Gillot, F. Toselli, Eds., Commission of the European Communities, ISPRA Establishment, EUR 10216 EN, 223 pp. (1985).

D. Diebel-Langohr, T. Hengstermann, R. Reuter, “Water Depth Resolved Determination of Hydrographic Parameters from Airborne Lidar Measurements,” in Marine Interfaces Ecohydrodynamics, pp. 591–602, J. C. J. Nihoul, Ed. (Elsevier, Amsterdam, 1986) 670 pp.

Edmonds, C. M.

M. P. F. Bristow, D. H. Bundy, C. M. Edmonds, P. E. Ponto, B. E. Frey, L. F. Small, “Airborne Laser Fluorosensor Survey of the Columbia and Snake Rivers: Simultaneous Measurements of Chlorophyll, Dissolved Organics and Optical Attenuation,” Int. J. Remote Sensing 6, 1707–1734 (1985).
[CrossRef]

Esaias, W.

Exton, R. J.

Fantasia, J. F.

J. F. Fantasia, T. M. Hard, H. G. Ingrao, “An Investigation of Oil Fluorescence as a Technique for Remote Sensing of Oil Spills,” D.O.T. Transportation Systems Center, U.S. Coast Guard, Report TSC-USCG-71-7 (1971).

Farmer, F. H.

Frey, B. E.

M. P. F. Bristow, D. H. Bundy, C. M. Edmonds, P. E. Ponto, B. E. Frey, L. F. Small, “Airborne Laser Fluorosensor Survey of the Columbia and Snake Rivers: Simultaneous Measurements of Chlorophyll, Dissolved Organics and Optical Attenuation,” Int. J. Remote Sensing 6, 1707–1734 (1985).
[CrossRef]

Garrett, W. D.

H. Hühnerfuss, W. D. Garrett, F. E. Hoge, “The Discrimination Between Crude Oil Spills and Monomolecular Sea Slicks by an Airborne Lidar,” Int. J. Remote Sensing 7, 137–150 (1986).
[CrossRef]

Gordon, H. R.

Hard, T. M.

J. F. Fantasia, T. M. Hard, H. G. Ingrao, “An Investigation of Oil Fluorescence as a Technique for Remote Sensing of Oil Spills,” D.O.T. Transportation Systems Center, U.S. Coast Guard, Report TSC-USCG-71-7 (1971).

Harriss, R. C.

Hengstermann, T.

D. Diebel-Langohr, T. Hengstermann, R. Reuter, “Water Depth Resolved Determination of Hydrographic Parameters from Airborne Lidar Measurements,” in Marine Interfaces Ecohydrodynamics, pp. 591–602, J. C. J. Nihoul, Ed. (Elsevier, Amsterdam, 1986) 670 pp.

D. Diebel-Langohr, T. Hengstermann, R. Reuter, G. Cecchi, L. Pantani, “Measuring Oil at Sea by means of an Airborne Laser Fluorosensor,” in The Archimedes 1 Experiment, pp. 123–142. R. H. Gillot, F. Toselli, Eds., Commission of the European Communities, ISPRA Establishment, EUR 10216 EN, 223 pp. (1985).

D. Diebel, T. Hengstermann, R. Reuter, “Classification of Oil Types with Time-Resolved Fluorescence Signal Detection: a Computer Model Study,” in Remote Sensing of Pollution of the Sea, pp. 266–280. R. Reuter, R. H. Gillot Eds. Commission of the European Communities, ISPRA Establishment (Varese, Italy), and BIS University of Oldenburg (FR Germany), S.P.I.87.46, 555 pp. (1987).

Hoge, F. E.

Houghton, W. M.

Houston, H. R.

R. M. Measures, H. R. Houston, D. G. Stephenson, “Laser Induced Fluorescence Decay Spectra—a New Form of Environmental Signature,” Opt. Eng. 13, 494–501 (1974).
[CrossRef]

Hühnerfuss, H.

H. Hühnerfuss, W. D. Garrett, F. E. Hoge, “The Discrimination Between Crude Oil Spills and Monomolecular Sea Slicks by an Airborne Lidar,” Int. J. Remote Sensing 7, 137–150 (1986).
[CrossRef]

Ingrao, H. G.

J. F. Fantasia, T. M. Hard, H. G. Ingrao, “An Investigation of Oil Fluorescence as a Technique for Remote Sensing of Oil Spills,” D.O.T. Transportation Systems Center, U.S. Coast Guard, Report TSC-USCG-71-7 (1971).

Itzkan, I.

Kakui, Y.

Kashiwagi, H.

Knight, R. W.

A. D. Thruston, R. W. Knight, “Characterization of Crude and Residual-Type Oils by Fluorescence Spectroscopy,” Environ. Sci. Technol. 5, 64–69 (1971).
[CrossRef]

Koechler, C.

P. Camagni, G. Colombo, C. Koechler, N. Omenetto, A. Pedrini, G. Rossi, “Remote Characterization of Mineral Oils by Laser Fluorosensing: Basic diagnostics and Simulation Experiments,” Commission of the European Communities, ISPRA Establishment (Varese, Italy), EUR 11781 EN (1988).

Kung, R. T. V.

Mazzinghi, P.

Measures, R. M.

R. M. Measures, H. R. Houston, D. G. Stephenson, “Laser Induced Fluorescence Decay Spectra—a New Form of Environmental Signature,” Opt. Eng. 13, 494–501 (1974).
[CrossRef]

Nanjo, M.

O’Neil, R. A.

Omenetto, N.

P. Camagni, G. Colombo, C. Koechler, N. Omenetto, A. Pedrini, G. Rossi, “Remote Characterization of Mineral Oils by Laser Fluorosensing: Basic diagnostics and Simulation Experiments,” Commission of the European Communities, ISPRA Establishment (Varese, Italy), EUR 11781 EN (1988).

Pantani, L.

P. Burlamacchi, G. Cecchi, P. Mazzinghi, L. Pantani, “Performance Evaluation of UV Sources for Lidar Fluorosensing of Oil Films,” Appl. Opt. 22, 48–53 (1983).
[CrossRef] [PubMed]

D. Diebel-Langohr, T. Hengstermann, R. Reuter, G. Cecchi, L. Pantani, “Measuring Oil at Sea by means of an Airborne Laser Fluorosensor,” in The Archimedes 1 Experiment, pp. 123–142. R. H. Gillot, F. Toselli, Eds., Commission of the European Communities, ISPRA Establishment, EUR 10216 EN, 223 pp. (1985).

Pedrini, A.

P. Camagni, G. Colombo, C. Koechler, N. Omenetto, A. Pedrini, G. Rossi, “Remote Characterization of Mineral Oils by Laser Fluorosensing: Basic diagnostics and Simulation Experiments,” Commission of the European Communities, ISPRA Establishment (Varese, Italy), EUR 11781 EN (1988).

Ponto, P. E.

M. P. F. Bristow, D. H. Bundy, C. M. Edmonds, P. E. Ponto, B. E. Frey, L. F. Small, “Airborne Laser Fluorosensor Survey of the Columbia and Snake Rivers: Simultaneous Measurements of Chlorophyll, Dissolved Organics and Optical Attenuation,” Int. J. Remote Sensing 6, 1707–1734 (1985).
[CrossRef]

Rayner, D. M.

Reuter, R.

D. Diebel, T. Hengstermann, R. Reuter, “Classification of Oil Types with Time-Resolved Fluorescence Signal Detection: a Computer Model Study,” in Remote Sensing of Pollution of the Sea, pp. 266–280. R. Reuter, R. H. Gillot Eds. Commission of the European Communities, ISPRA Establishment (Varese, Italy), and BIS University of Oldenburg (FR Germany), S.P.I.87.46, 555 pp. (1987).

D. Diebel-Langohr, T. Hengstermann, R. Reuter, G. Cecchi, L. Pantani, “Measuring Oil at Sea by means of an Airborne Laser Fluorosensor,” in The Archimedes 1 Experiment, pp. 123–142. R. H. Gillot, F. Toselli, Eds., Commission of the European Communities, ISPRA Establishment, EUR 10216 EN, 223 pp. (1985).

D. Diebel-Langohr, T. Hengstermann, R. Reuter, “Water Depth Resolved Determination of Hydrographic Parameters from Airborne Lidar Measurements,” in Marine Interfaces Ecohydrodynamics, pp. 591–602, J. C. J. Nihoul, Ed. (Elsevier, Amsterdam, 1986) 670 pp.

Rossi, G.

P. Camagni, G. Colombo, C. Koechler, N. Omenetto, A. Pedrini, G. Rossi, “Remote Characterization of Mineral Oils by Laser Fluorosensing: Basic diagnostics and Simulation Experiments,” Commission of the European Communities, ISPRA Establishment (Varese, Italy), EUR 11781 EN (1988).

Sato, T.

Schriel, R. H.

R. H. Schriel, Rijkswaterstaat, personal communication

Schwarz, J.

J. Schwarz, “Consolidation of NRC Oil Spectra onto Single Magnetic Tape: NRCOIL” DAD Technical Note 1982-07, Canada Centre for Remote Sensing, Ottawa, Canada, 79 pp. (1982).

Small, L. F.

M. P. F. Bristow, D. H. Bundy, C. M. Edmonds, P. E. Ponto, B. E. Frey, L. F. Small, “Airborne Laser Fluorosensor Survey of the Columbia and Snake Rivers: Simultaneous Measurements of Chlorophyll, Dissolved Organics and Optical Attenuation,” Int. J. Remote Sensing 6, 1707–1734 (1985).
[CrossRef]

Stephenson, D. G.

R. M. Measures, H. R. Houston, D. G. Stephenson, “Laser Induced Fluorescence Decay Spectra—a New Form of Environmental Signature,” Opt. Eng. 13, 494–501 (1974).
[CrossRef]

Suzuki, Y.

Swift, R. N.

Szabo, A. G.

Thruston, A. D.

A. D. Thruston, R. W. Knight, “Characterization of Crude and Residual-Type Oils by Fluorescence Spectroscopy,” Environ. Sci. Technol. 5, 64–69 (1971).
[CrossRef]

Visser, H.

White, H. H.

Appl. Opt. (12)

F. E. Hoge, R. N. Swift, “Airborne Detection of Oceanic Turbidity Cell Structure using Depth-Resolved Laser-Induced Water Raman Backscatter,” Appl. Opt. 22, 3778–3786 (1983).
[CrossRef] [PubMed]

R. J. Exton, W. M. Houghton, W. Esaias, R. C. Harriss, F. H. Farmer, H. H. White, “Laboratory Analysis of Techniques for Remote Sensing of Estuarine Parameters using Laser Excitation,” Appl. Opt. 22, 54–64 (1983).
[CrossRef] [PubMed]

R. T. V. Kung, I. Itzkan, “Absolute Oil Fluorescence Conversion Efficiency,” Appl. Opt. 15, 409–415 (1976).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, “Experimental Feasibility of the Airborne Measurement of Absolute Oil Fluorescence Spectral Conversion Efficiency,” Appl. Opt. 22, 37–46 (1983).
[CrossRef] [PubMed]

T. Sato, Y. Suzuki, H. Kashiwagi, M. Nanjo, Y. Kakui, “Laser Radar for Remote Detection of Oil Spills,” Appl. Opt. 17, 3798–3803 (1978).
[CrossRef] [PubMed]

R. A. O’Neil, L. Buja-Bijunas, D. M. Rayner, “Field Performance of a Laser Fluorosensor for the Detection of Oil Spills,” Appl. Opt. 19, 863–870 (1980).
[CrossRef]

P. Burlamacchi, G. Cecchi, P. Mazzinghi, L. Pantani, “Performance Evaluation of UV Sources for Lidar Fluorosensing of Oil Films,” Appl. Opt. 22, 48–53 (1983).
[CrossRef] [PubMed]

D. M. Rayner, A. G. Szabo, “Time-Resolved Laser Fluorosensors: a Laboratory Study of Their Potential in the Remote Characterization of Oil,” Appl. Opt. 17, 1624–1630 (1978).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, “Oil Film Thickness Measurement Using Airborne Laser-Induced Water Raman Backscatter,” Appl. Opt. 193269–3281 (1980).
[CrossRef] [PubMed]

H. Visser, “Teledetection of the Thickness of Oil Films on Polluted Water Based on the Oil Fluorescence Properties,” Appl. Opt. 18, 1746–1749 (1979).
[CrossRef] [PubMed]

F. E. Hoge, “Oil Film Thickness Using Airborne Laser-Induced Oil Fluorescence Backscatter,” Appl. Opt. 22, 3316–3317 (1983).
[CrossRef] [PubMed]

H. R. Gordon, “Interpretation of Airborne Oceanic Lidar: Effects of Multiple Scattering,” Appl. Opt. 21, 2996–3001 (1982).
[CrossRef] [PubMed]

Commission of the European Communities, ISPRA Establishment (Varese, Italy), EUR 11781 EN (1)

P. Camagni, G. Colombo, C. Koechler, N. Omenetto, A. Pedrini, G. Rossi, “Remote Characterization of Mineral Oils by Laser Fluorosensing: Basic diagnostics and Simulation Experiments,” Commission of the European Communities, ISPRA Establishment (Varese, Italy), EUR 11781 EN (1988).

Environ. Sci. Technol. (1)

A. D. Thruston, R. W. Knight, “Characterization of Crude and Residual-Type Oils by Fluorescence Spectroscopy,” Environ. Sci. Technol. 5, 64–69 (1971).
[CrossRef]

Int. J. Remote Sensing (2)

M. P. F. Bristow, D. H. Bundy, C. M. Edmonds, P. E. Ponto, B. E. Frey, L. F. Small, “Airborne Laser Fluorosensor Survey of the Columbia and Snake Rivers: Simultaneous Measurements of Chlorophyll, Dissolved Organics and Optical Attenuation,” Int. J. Remote Sensing 6, 1707–1734 (1985).
[CrossRef]

H. Hühnerfuss, W. D. Garrett, F. E. Hoge, “The Discrimination Between Crude Oil Spills and Monomolecular Sea Slicks by an Airborne Lidar,” Int. J. Remote Sensing 7, 137–150 (1986).
[CrossRef]

NASA Technical Note TN D-8447 (1)

E. V. Browell, “Analysis of Laser Fluorosensor Systems for Remote Algae Detection and Quantification,” NASA Technical Note TN D-8447, 39 pp. (June1977).

Opt. Eng. (1)

R. M. Measures, H. R. Houston, D. G. Stephenson, “Laser Induced Fluorescence Decay Spectra—a New Form of Environmental Signature,” Opt. Eng. 13, 494–501 (1974).
[CrossRef]

Other (6)

D. Diebel, T. Hengstermann, R. Reuter, “Classification of Oil Types with Time-Resolved Fluorescence Signal Detection: a Computer Model Study,” in Remote Sensing of Pollution of the Sea, pp. 266–280. R. Reuter, R. H. Gillot Eds. Commission of the European Communities, ISPRA Establishment (Varese, Italy), and BIS University of Oldenburg (FR Germany), S.P.I.87.46, 555 pp. (1987).

D. Diebel-Langohr, T. Hengstermann, R. Reuter, “Water Depth Resolved Determination of Hydrographic Parameters from Airborne Lidar Measurements,” in Marine Interfaces Ecohydrodynamics, pp. 591–602, J. C. J. Nihoul, Ed. (Elsevier, Amsterdam, 1986) 670 pp.

R. H. Schriel, Rijkswaterstaat, personal communication

D. Diebel-Langohr, T. Hengstermann, R. Reuter, G. Cecchi, L. Pantani, “Measuring Oil at Sea by means of an Airborne Laser Fluorosensor,” in The Archimedes 1 Experiment, pp. 123–142. R. H. Gillot, F. Toselli, Eds., Commission of the European Communities, ISPRA Establishment, EUR 10216 EN, 223 pp. (1985).

J. F. Fantasia, T. M. Hard, H. G. Ingrao, “An Investigation of Oil Fluorescence as a Technique for Remote Sensing of Oil Spills,” D.O.T. Transportation Systems Center, U.S. Coast Guard, Report TSC-USCG-71-7 (1971).

J. Schwarz, “Consolidation of NRC Oil Spectra onto Single Magnetic Tape: NRCOIL” DAD Technical Note 1982-07, Canada Centre for Remote Sensing, Ottawa, Canada, 79 pp. (1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Emission spectrum of a natural water sample taken from the German Bight. Excitation wavelength is 308 nm. The peaks at 308 and 344 nm are due to elastic scattering and water Raman scattering, respectively. The broad fluorescence band centered at 420 nm is due to dissolved organic matter (gelbstoff), that centered at 685 nm is due to chlorophyll a. Spectral position of detection channels of the oceanographic lidar system is indicated on the abscissa.

Fig. 2
Fig. 2

Emission spectra of North Sea crude oils obtained with a Perkin-Elmer model 650-40 spectrofluorometer. Excitation wavelength is 308 nm. The graphs have been corrected for the spectral sensitivity of the instrument.

Fig. 3
Fig. 3

Emission spectra of fish oil and olive oil. The Auk crude oil spectrum from Fig. 2 is shown for comparison.

Fig. 4
Fig. 4

Optical part of the oceanographic lidar system. The position of the telescope is above a bottom hatch of the aircraft for a free field of view towards the water surface. The optical axes of the laser beams and the telescope are coaxial. Only three of seven photomultipliers are shown.

Fig. 5
Fig. 5

Schematic signal flow of the Oceanographic Lidar System.

Fig. 6
Fig. 6

Emission spectra of the crude oil and the diesel oil used in the MARPOL exercise. Excitation wavelength is 308 nm.

Fig. 7
Fig. 7

OLS profile # 109 obtained over the 60 l/n.m. crude oil spill on 7 May 1986, 7:45 h. Signals obtained at different wavelengths with 308-nm ecitation are plotted as a function of the flight distance. Ship position is at 4300 m in the distance scale. The film thickness distribution displayed on the left below is calculated from the water Raman scatter intensity in the detection channel 344 nm after correction of fluorescence contributions at this emission wavelength by extrapolation of the 366- and 380-nm detection channels.

Fig. 8
Fig. 8

OLS profile # 111 obtained over the 60 l/n.m. crude oil and diesel spills on 7 May 1986, 7:55 h. Crude oil ends, and diesel begins at position 4600 m. Ship position is at 5700 m.

Fig. 9
Fig. 9

OLS profile # 116 obtained over the 60-l/n.m. crude oil and diesel spills and the 200 ppm spill on 7 May 1986, 8:25 h. Crude oil ends, and diesel begins at position 4500 m. diesel ends, and 200 ppm discharge begins at position 8000 m. Ship position is at 11000 m.

Fig. 10
Fig. 10

Examples of emission spectra obtained from the 60-l/n.m. crude oil and Diesel spills and the surrounding oil-free water, profile # 111.

Fig. 11
Fig. 11

Results obtained in the experiment ‘Archimedes 1’ in Dutch coastal waters on 21 Oct. 1983, over a fuel oil spill. The bulk of the oil is found in several patches between positions 3.5 and 4.5 km, giving rise to a strong 344-nm water Raman depression and 650-nm fluorescence. The 500-nm signal is ambiguous with respect to the clear water data shown at positions up to 3.0 km, which is due to decomposition of oil into fractions having different optical properties.

Tables (2)

Tables Icon

Table I Characterization of the Oceanographic Lidar System

Tables Icon

Table II Flights Performed In the MARPOL-Exercise

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

P = [ A / ( m H ) 2 ] ( σ / k ) ,
P 0 , w = [ A / ( m H ) 2 ] [ σ 0 / a 0 + ( σ w / k w - σ 0 / a 0 ) exp ( - a 0 d ) ]
R 0 , w / R w = exp ( - a 0 d ) ,
d P = A σ { exp ( - τ ) / ( z + m H ) 2 } d z
τ = 0 z k ( z ) d z
P z 1 z 2 = A exp ( - 0 z 1 k d z ) · z 1 z 2 σ exp ( - z 1 z k d z ) ( z + m H ) 2 d z d Z = A exp ( - 0 z 1 k d z ) · Φ .
Φ = σ exp ( m H k w 1 ) m H w 1 w 2 exp ( - m H k w ) w 2 d w .
d w = - 1 m H k + 2 w w 2 exp ( - m H k w ) d exp ( - m H k w ) w 2 .
Φ = σ k 1 ( m H ) 2 { 1 w 1 2 - exp [ - m H k ( w 2 - w 1 ) ] w 2 2 } .
P z 1 z 2 = A exp ( - 0 z 1 k d z ) σ k { 1 ( z 1 + m H ) 2 - exp [ - k ( z 2 - z 1 ) ] ( z 2 + m H ) 2 } .

Metrics