Abstract

We examine the interior electromagnetic energy density of a coated nonabsorbing sphere at a number of scattering resonances. As is the case for an uncoated sphere, the interior energy density becomes large at the ap and bp resonances. It becomes especially large for p − 1 values of the coating thickness at resonance. These p − 1 enhancements are analogous to the interference maxima that occur in the intensity reflectance of two thin films in contact.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Chýlek, “Partial-Wave Resonances and the Ripple Structure in the Mie Normalized Extinction Cross Section,” J. Opt. Soc. Am. 66, 285–287 (1976).
    [Crossref]
  2. P. Chýlek, J. T. Kiehl, M. K. W. Ko, “Optical Levitation and Partial-Wave Resonances,” Phys. Rev. A18, 2229–2233 (1978).
  3. P. Chýlek, J. T. Kiehl, M. K. W. Ko, “Narrow Resonance Structure in the Mie Scattering Characteristics,” Appl. Opt. 17, 3019–3021 (1978).
    [Crossref] [PubMed]
  4. A. Ashkin, J. M. Dziedzic, “Observation of Resonances in the Radiation Pressure on Dielectric Spheres,” Phys. Rev. Lett. 38, 1351–1354 (1977).
    [Crossref]
  5. A. Ashkin, J. M. Dziedzic, “Observation of Optical Resonances of Dielectric Spheres by Light Scattering,” Appl. Opt. 20, 1803–1814 (1981).
    [Crossref] [PubMed]
  6. H. S. Bennett, G. J. Rosasco, “Resonances in the Efficiency Factors for Absorption: Mie Scattering Theory,” Appl. Opt. 17, 491–493 (1978).
    [Crossref] [PubMed]
  7. G. J. Rosasco, H. S. Bennett, “Internal Field Resonance Structure: Implications for Optical Absorption and Scattering by Microscopic Particles,” J. Opt. Soc. Am. 68, 1242–1250 (1978).
    [Crossref]
  8. J. F. Owen et al., “Enhancement of Fluorescence Induced by Microstructure Resonances of a Dielectric Fiber,” Phys. Rev. Lett. 47, 1075–1078 (1981).
    [Crossref]
  9. R. Thurn, W. Kiefer, “Structural Resonances Observed in Raman Spectra of Optically Levitated Liquid Droplets,” Appl. Opt. 24, 1515–1519 (1985).
    [Crossref] [PubMed]
  10. L. M. Folan, S. Arnold, S. D. Druger, “Enhanced Energy Transfer within a Microparticle,” Chem. Phys. Lett. 118, 322–327 (1985).
    [Crossref]
  11. H.-M. Tzeng et al., “Laser Emission from Individual Droplets at Wavelengths Corresponding to Morphology-Dependent Resonances,” Opt. Lett. 9, 499–501 (1984).
    [Crossref] [PubMed]
  12. J. B. Snow, S.-X. Qian, R. K. Chang, “Stimulated Raman-Scattering from Individual Water and Ethanol Droplets at Morphology-Dependent Resonances,” Opt. Lett. 10, 37–39 (1985).
    [Crossref] [PubMed]
  13. P. W. Dusel, M. Kerker, D. D. Cooke, “Distribution of Absorption Centers within Irradiated Spheres,” J. Opt. Soc. Am. 69, 55–59 (1979).
    [Crossref]
  14. A. B. Pluchino, “Emissivity Spectra of Composite Microscopic Particles,” Appl. Opt. 20, 531–533 (1981).
    [Crossref] [PubMed]
  15. A. B. Pluchino, “Surface Waves and the Radiative Properties of Micron-Sized Particles,” Appl. Opt. 20, 2986–2992 (1981).
    [Crossref] [PubMed]
  16. R. Bhandari, “Tiny Core or Thin Layer as a Perturbation in Scattering by a Single-Layered Sphere,” J. Opt. Soc. Am. A3, 319–328 (1986).
    [Crossref]
  17. R. Bhandari, “Specific Absorption of a Tiny Absorbing Particle Embedded within a Nonabsorbing Particle,” Appl. Opt. 25, 3331–3333 (1986).
    [Crossref] [PubMed]
  18. R. L. Hightower, C. B. Richardson, “Resonant Mie Scattering from a Layered Sphere,” Appl. Opt. 27, 4850–4855 (1988).
    [Crossref] [PubMed]
  19. P. Chýlek, “Large-Sphere Limits of the Mie-Scattering Functions,” J. Opt. Soc. Am. 63, 699–706 (1973).
    [Crossref]
  20. B. A. Hunter, M. A. Box, B. Maier, “Resonance Structure in Weakly Absorbing Spheres,” J. Opt. Soc. Am. A5, 1281–1286 (1988).
    [Crossref]
  21. J. F. Owen et al., “Determination of Optical-Film Diameter from Resonance in the Elastic Scattering Spectrum,” Opt. Lett. 6, 272–274 (1981).
    [Crossref] [PubMed]
  22. H. M. Nussenzveig, “High-Frequency Scattering by a Transparent Sphere. I. Direct Reflection and Transmission,” J. Math. Phys. 10, 82–124 (1969).
    [Crossref]
  23. J. A. Lock, “Cooperative Effects Among Partial Waves in Mie Scattering,” J. Opt. Soc. Am. A5, 2032–2044 (1988).
    [Crossref]
  24. H. Inada, M. A. Plonus, “The Geometric Optics Contribution to the Scattering from a Large Dense Dielectric Sphere,” IEEE Trans. Ant. Prop. AP-18, 89–99 (1970).
    [Crossref]
  25. H. Inada, M. A. Plonus, “The Diffracted Field Contribution to the Scattering from a Large Dense Dielectric Sphere,” IEEE Trans. Ant. Prop. AP-18, 649–660 (1970).
    [Crossref]
  26. H. M. Nussenzveig, “High-Frequency Scattering from an Impenetrable Sphere,” Ann. Phys. (N.Y.) 34, 23–95 (1965).
    [Crossref]
  27. H. M. Nussenzveig, “Complex Angular Momentum Theory of the Rainbow and the Glory,” J. Opt. Soc. Am. 69, 1068–1079, 1193–1194 (1979).
    [Crossref]
  28. J. R. Probert-Jones, “Surface Waves in Backscattering and the Localization Principle,” J. Opt. Soc. Am. 73, 503 (1983).
    [Crossref]
  29. J. R. Probert-Jones, “Resonance Component of Backscattering by Large Dielectric Spheres,” J. Opt. Soc. Am. A1, 822–830 (1984).
    [Crossref]
  30. J. D. Murphy et al., “A Surface Wave Interpretation for the Resonances of a Dielectric Sphere,” IEEE Trans. Ant. Prop. AP-28, 924–927 (1980).
    [Crossref]
  31. J. F. Owen, R. K. Chang, P. W. Barber, “Internal Electric Field Distributions of a Dielectric Cylinder at Resonance Wavelengths,” Opt. Lett. 6, 540–542 (1981).
    [Crossref] [PubMed]
  32. P. Chýlek, “Asymptotic Limits of the Mie-Scattering Characteristics,” J. Opt. Soc. Am. 65, 1316–1318 (1975).
    [Crossref]
  33. P. Chýlek, J. D. Pendleton, R. G. Pinnick, “Internal and Near-Surface Scattered Field of a Spherical Particle at Resonant Conditions,” Appl. Opt. 24, 3940–3942 (1985).
    [Crossref] [PubMed]
  34. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983) Sec. 8.1, appendix B.
  35. A. Messiah, Quantum Mechanics Vol. 1 (Wiley, New York, 1968) p. 490.
  36. C. F. Bohren, “Scattering by a Sphere and Reflection by a Slab: Some Notable Similarities,” Appl. Opt. 27, 205–206 (1988).
    [Crossref] [PubMed]
  37. R. M. Eisberg, Fundamentals of Modern Physics (Wiley, New York, 1967) section 8.3.
  38. J. R. Reitz, F. J. Milford, R. W. Christy, Foundations of Electromagnetic Theory (Addison-Wesley, Reading, MA, 1979) Sec. 18-5.

1988 (4)

R. L. Hightower, C. B. Richardson, “Resonant Mie Scattering from a Layered Sphere,” Appl. Opt. 27, 4850–4855 (1988).
[Crossref] [PubMed]

J. A. Lock, “Cooperative Effects Among Partial Waves in Mie Scattering,” J. Opt. Soc. Am. A5, 2032–2044 (1988).
[Crossref]

B. A. Hunter, M. A. Box, B. Maier, “Resonance Structure in Weakly Absorbing Spheres,” J. Opt. Soc. Am. A5, 1281–1286 (1988).
[Crossref]

C. F. Bohren, “Scattering by a Sphere and Reflection by a Slab: Some Notable Similarities,” Appl. Opt. 27, 205–206 (1988).
[Crossref] [PubMed]

1986 (2)

R. Bhandari, “Tiny Core or Thin Layer as a Perturbation in Scattering by a Single-Layered Sphere,” J. Opt. Soc. Am. A3, 319–328 (1986).
[Crossref]

R. Bhandari, “Specific Absorption of a Tiny Absorbing Particle Embedded within a Nonabsorbing Particle,” Appl. Opt. 25, 3331–3333 (1986).
[Crossref] [PubMed]

1985 (4)

1984 (2)

J. R. Probert-Jones, “Resonance Component of Backscattering by Large Dielectric Spheres,” J. Opt. Soc. Am. A1, 822–830 (1984).
[Crossref]

H.-M. Tzeng et al., “Laser Emission from Individual Droplets at Wavelengths Corresponding to Morphology-Dependent Resonances,” Opt. Lett. 9, 499–501 (1984).
[Crossref] [PubMed]

1983 (1)

1981 (6)

1980 (1)

J. D. Murphy et al., “A Surface Wave Interpretation for the Resonances of a Dielectric Sphere,” IEEE Trans. Ant. Prop. AP-28, 924–927 (1980).
[Crossref]

1979 (2)

H. M. Nussenzveig, “Complex Angular Momentum Theory of the Rainbow and the Glory,” J. Opt. Soc. Am. 69, 1068–1079, 1193–1194 (1979).
[Crossref]

P. W. Dusel, M. Kerker, D. D. Cooke, “Distribution of Absorption Centers within Irradiated Spheres,” J. Opt. Soc. Am. 69, 55–59 (1979).
[Crossref]

1978 (4)

1977 (1)

A. Ashkin, J. M. Dziedzic, “Observation of Resonances in the Radiation Pressure on Dielectric Spheres,” Phys. Rev. Lett. 38, 1351–1354 (1977).
[Crossref]

1976 (1)

1975 (1)

1973 (1)

1970 (2)

H. Inada, M. A. Plonus, “The Geometric Optics Contribution to the Scattering from a Large Dense Dielectric Sphere,” IEEE Trans. Ant. Prop. AP-18, 89–99 (1970).
[Crossref]

H. Inada, M. A. Plonus, “The Diffracted Field Contribution to the Scattering from a Large Dense Dielectric Sphere,” IEEE Trans. Ant. Prop. AP-18, 649–660 (1970).
[Crossref]

1969 (1)

H. M. Nussenzveig, “High-Frequency Scattering by a Transparent Sphere. I. Direct Reflection and Transmission,” J. Math. Phys. 10, 82–124 (1969).
[Crossref]

1965 (1)

H. M. Nussenzveig, “High-Frequency Scattering from an Impenetrable Sphere,” Ann. Phys. (N.Y.) 34, 23–95 (1965).
[Crossref]

Arnold, S.

L. M. Folan, S. Arnold, S. D. Druger, “Enhanced Energy Transfer within a Microparticle,” Chem. Phys. Lett. 118, 322–327 (1985).
[Crossref]

Ashkin, A.

A. Ashkin, J. M. Dziedzic, “Observation of Optical Resonances of Dielectric Spheres by Light Scattering,” Appl. Opt. 20, 1803–1814 (1981).
[Crossref] [PubMed]

A. Ashkin, J. M. Dziedzic, “Observation of Resonances in the Radiation Pressure on Dielectric Spheres,” Phys. Rev. Lett. 38, 1351–1354 (1977).
[Crossref]

Barber, P. W.

Bennett, H. S.

Bhandari, R.

R. Bhandari, “Tiny Core or Thin Layer as a Perturbation in Scattering by a Single-Layered Sphere,” J. Opt. Soc. Am. A3, 319–328 (1986).
[Crossref]

R. Bhandari, “Specific Absorption of a Tiny Absorbing Particle Embedded within a Nonabsorbing Particle,” Appl. Opt. 25, 3331–3333 (1986).
[Crossref] [PubMed]

Bohren, C. F.

C. F. Bohren, “Scattering by a Sphere and Reflection by a Slab: Some Notable Similarities,” Appl. Opt. 27, 205–206 (1988).
[Crossref] [PubMed]

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983) Sec. 8.1, appendix B.

Box, M. A.

B. A. Hunter, M. A. Box, B. Maier, “Resonance Structure in Weakly Absorbing Spheres,” J. Opt. Soc. Am. A5, 1281–1286 (1988).
[Crossref]

Chang, R. K.

Christy, R. W.

J. R. Reitz, F. J. Milford, R. W. Christy, Foundations of Electromagnetic Theory (Addison-Wesley, Reading, MA, 1979) Sec. 18-5.

Chýlek, P.

Cooke, D. D.

Druger, S. D.

L. M. Folan, S. Arnold, S. D. Druger, “Enhanced Energy Transfer within a Microparticle,” Chem. Phys. Lett. 118, 322–327 (1985).
[Crossref]

Dusel, P. W.

Dziedzic, J. M.

A. Ashkin, J. M. Dziedzic, “Observation of Optical Resonances of Dielectric Spheres by Light Scattering,” Appl. Opt. 20, 1803–1814 (1981).
[Crossref] [PubMed]

A. Ashkin, J. M. Dziedzic, “Observation of Resonances in the Radiation Pressure on Dielectric Spheres,” Phys. Rev. Lett. 38, 1351–1354 (1977).
[Crossref]

Eisberg, R. M.

R. M. Eisberg, Fundamentals of Modern Physics (Wiley, New York, 1967) section 8.3.

Folan, L. M.

L. M. Folan, S. Arnold, S. D. Druger, “Enhanced Energy Transfer within a Microparticle,” Chem. Phys. Lett. 118, 322–327 (1985).
[Crossref]

Hightower, R. L.

Huffman, D. R.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983) Sec. 8.1, appendix B.

Hunter, B. A.

B. A. Hunter, M. A. Box, B. Maier, “Resonance Structure in Weakly Absorbing Spheres,” J. Opt. Soc. Am. A5, 1281–1286 (1988).
[Crossref]

Inada, H.

H. Inada, M. A. Plonus, “The Geometric Optics Contribution to the Scattering from a Large Dense Dielectric Sphere,” IEEE Trans. Ant. Prop. AP-18, 89–99 (1970).
[Crossref]

H. Inada, M. A. Plonus, “The Diffracted Field Contribution to the Scattering from a Large Dense Dielectric Sphere,” IEEE Trans. Ant. Prop. AP-18, 649–660 (1970).
[Crossref]

Kerker, M.

Kiefer, W.

Kiehl, J. T.

P. Chýlek, J. T. Kiehl, M. K. W. Ko, “Narrow Resonance Structure in the Mie Scattering Characteristics,” Appl. Opt. 17, 3019–3021 (1978).
[Crossref] [PubMed]

P. Chýlek, J. T. Kiehl, M. K. W. Ko, “Optical Levitation and Partial-Wave Resonances,” Phys. Rev. A18, 2229–2233 (1978).

Ko, M. K. W.

P. Chýlek, J. T. Kiehl, M. K. W. Ko, “Optical Levitation and Partial-Wave Resonances,” Phys. Rev. A18, 2229–2233 (1978).

P. Chýlek, J. T. Kiehl, M. K. W. Ko, “Narrow Resonance Structure in the Mie Scattering Characteristics,” Appl. Opt. 17, 3019–3021 (1978).
[Crossref] [PubMed]

Lock, J. A.

J. A. Lock, “Cooperative Effects Among Partial Waves in Mie Scattering,” J. Opt. Soc. Am. A5, 2032–2044 (1988).
[Crossref]

Maier, B.

B. A. Hunter, M. A. Box, B. Maier, “Resonance Structure in Weakly Absorbing Spheres,” J. Opt. Soc. Am. A5, 1281–1286 (1988).
[Crossref]

Messiah, A.

A. Messiah, Quantum Mechanics Vol. 1 (Wiley, New York, 1968) p. 490.

Milford, F. J.

J. R. Reitz, F. J. Milford, R. W. Christy, Foundations of Electromagnetic Theory (Addison-Wesley, Reading, MA, 1979) Sec. 18-5.

Murphy, J. D.

J. D. Murphy et al., “A Surface Wave Interpretation for the Resonances of a Dielectric Sphere,” IEEE Trans. Ant. Prop. AP-28, 924–927 (1980).
[Crossref]

Nussenzveig, H. M.

H. M. Nussenzveig, “Complex Angular Momentum Theory of the Rainbow and the Glory,” J. Opt. Soc. Am. 69, 1068–1079, 1193–1194 (1979).
[Crossref]

H. M. Nussenzveig, “High-Frequency Scattering by a Transparent Sphere. I. Direct Reflection and Transmission,” J. Math. Phys. 10, 82–124 (1969).
[Crossref]

H. M. Nussenzveig, “High-Frequency Scattering from an Impenetrable Sphere,” Ann. Phys. (N.Y.) 34, 23–95 (1965).
[Crossref]

Owen, J. F.

Pendleton, J. D.

Pinnick, R. G.

Plonus, M. A.

H. Inada, M. A. Plonus, “The Diffracted Field Contribution to the Scattering from a Large Dense Dielectric Sphere,” IEEE Trans. Ant. Prop. AP-18, 649–660 (1970).
[Crossref]

H. Inada, M. A. Plonus, “The Geometric Optics Contribution to the Scattering from a Large Dense Dielectric Sphere,” IEEE Trans. Ant. Prop. AP-18, 89–99 (1970).
[Crossref]

Pluchino, A. B.

Probert-Jones, J. R.

J. R. Probert-Jones, “Resonance Component of Backscattering by Large Dielectric Spheres,” J. Opt. Soc. Am. A1, 822–830 (1984).
[Crossref]

J. R. Probert-Jones, “Surface Waves in Backscattering and the Localization Principle,” J. Opt. Soc. Am. 73, 503 (1983).
[Crossref]

Qian, S.-X.

Reitz, J. R.

J. R. Reitz, F. J. Milford, R. W. Christy, Foundations of Electromagnetic Theory (Addison-Wesley, Reading, MA, 1979) Sec. 18-5.

Richardson, C. B.

Rosasco, G. J.

Snow, J. B.

Thurn, R.

Tzeng, H.-M.

Ann. Phys. (N.Y.) (1)

H. M. Nussenzveig, “High-Frequency Scattering from an Impenetrable Sphere,” Ann. Phys. (N.Y.) 34, 23–95 (1965).
[Crossref]

Appl. Opt. (10)

A. B. Pluchino, “Emissivity Spectra of Composite Microscopic Particles,” Appl. Opt. 20, 531–533 (1981).
[Crossref] [PubMed]

A. B. Pluchino, “Surface Waves and the Radiative Properties of Micron-Sized Particles,” Appl. Opt. 20, 2986–2992 (1981).
[Crossref] [PubMed]

P. Chýlek, J. D. Pendleton, R. G. Pinnick, “Internal and Near-Surface Scattered Field of a Spherical Particle at Resonant Conditions,” Appl. Opt. 24, 3940–3942 (1985).
[Crossref] [PubMed]

P. Chýlek, J. T. Kiehl, M. K. W. Ko, “Narrow Resonance Structure in the Mie Scattering Characteristics,” Appl. Opt. 17, 3019–3021 (1978).
[Crossref] [PubMed]

A. Ashkin, J. M. Dziedzic, “Observation of Optical Resonances of Dielectric Spheres by Light Scattering,” Appl. Opt. 20, 1803–1814 (1981).
[Crossref] [PubMed]

H. S. Bennett, G. J. Rosasco, “Resonances in the Efficiency Factors for Absorption: Mie Scattering Theory,” Appl. Opt. 17, 491–493 (1978).
[Crossref] [PubMed]

R. Thurn, W. Kiefer, “Structural Resonances Observed in Raman Spectra of Optically Levitated Liquid Droplets,” Appl. Opt. 24, 1515–1519 (1985).
[Crossref] [PubMed]

R. Bhandari, “Specific Absorption of a Tiny Absorbing Particle Embedded within a Nonabsorbing Particle,” Appl. Opt. 25, 3331–3333 (1986).
[Crossref] [PubMed]

R. L. Hightower, C. B. Richardson, “Resonant Mie Scattering from a Layered Sphere,” Appl. Opt. 27, 4850–4855 (1988).
[Crossref] [PubMed]

C. F. Bohren, “Scattering by a Sphere and Reflection by a Slab: Some Notable Similarities,” Appl. Opt. 27, 205–206 (1988).
[Crossref] [PubMed]

Chem. Phys. Lett. (1)

L. M. Folan, S. Arnold, S. D. Druger, “Enhanced Energy Transfer within a Microparticle,” Chem. Phys. Lett. 118, 322–327 (1985).
[Crossref]

IEEE Trans. Ant. Prop. (3)

H. Inada, M. A. Plonus, “The Geometric Optics Contribution to the Scattering from a Large Dense Dielectric Sphere,” IEEE Trans. Ant. Prop. AP-18, 89–99 (1970).
[Crossref]

H. Inada, M. A. Plonus, “The Diffracted Field Contribution to the Scattering from a Large Dense Dielectric Sphere,” IEEE Trans. Ant. Prop. AP-18, 649–660 (1970).
[Crossref]

J. D. Murphy et al., “A Surface Wave Interpretation for the Resonances of a Dielectric Sphere,” IEEE Trans. Ant. Prop. AP-28, 924–927 (1980).
[Crossref]

J. Math. Phys. (1)

H. M. Nussenzveig, “High-Frequency Scattering by a Transparent Sphere. I. Direct Reflection and Transmission,” J. Math. Phys. 10, 82–124 (1969).
[Crossref]

J. Opt. Soc. Am. (11)

J. A. Lock, “Cooperative Effects Among Partial Waves in Mie Scattering,” J. Opt. Soc. Am. A5, 2032–2044 (1988).
[Crossref]

R. Bhandari, “Tiny Core or Thin Layer as a Perturbation in Scattering by a Single-Layered Sphere,” J. Opt. Soc. Am. A3, 319–328 (1986).
[Crossref]

H. M. Nussenzveig, “Complex Angular Momentum Theory of the Rainbow and the Glory,” J. Opt. Soc. Am. 69, 1068–1079, 1193–1194 (1979).
[Crossref]

J. R. Probert-Jones, “Surface Waves in Backscattering and the Localization Principle,” J. Opt. Soc. Am. 73, 503 (1983).
[Crossref]

J. R. Probert-Jones, “Resonance Component of Backscattering by Large Dielectric Spheres,” J. Opt. Soc. Am. A1, 822–830 (1984).
[Crossref]

P. W. Dusel, M. Kerker, D. D. Cooke, “Distribution of Absorption Centers within Irradiated Spheres,” J. Opt. Soc. Am. 69, 55–59 (1979).
[Crossref]

P. Chýlek, “Asymptotic Limits of the Mie-Scattering Characteristics,” J. Opt. Soc. Am. 65, 1316–1318 (1975).
[Crossref]

P. Chýlek, “Large-Sphere Limits of the Mie-Scattering Functions,” J. Opt. Soc. Am. 63, 699–706 (1973).
[Crossref]

B. A. Hunter, M. A. Box, B. Maier, “Resonance Structure in Weakly Absorbing Spheres,” J. Opt. Soc. Am. A5, 1281–1286 (1988).
[Crossref]

G. J. Rosasco, H. S. Bennett, “Internal Field Resonance Structure: Implications for Optical Absorption and Scattering by Microscopic Particles,” J. Opt. Soc. Am. 68, 1242–1250 (1978).
[Crossref]

P. Chýlek, “Partial-Wave Resonances and the Ripple Structure in the Mie Normalized Extinction Cross Section,” J. Opt. Soc. Am. 66, 285–287 (1976).
[Crossref]

Opt. Lett. (4)

Phys. Rev. (1)

P. Chýlek, J. T. Kiehl, M. K. W. Ko, “Optical Levitation and Partial-Wave Resonances,” Phys. Rev. A18, 2229–2233 (1978).

Phys. Rev. Lett. (2)

A. Ashkin, J. M. Dziedzic, “Observation of Resonances in the Radiation Pressure on Dielectric Spheres,” Phys. Rev. Lett. 38, 1351–1354 (1977).
[Crossref]

J. F. Owen et al., “Enhancement of Fluorescence Induced by Microstructure Resonances of a Dielectric Fiber,” Phys. Rev. Lett. 47, 1075–1078 (1981).
[Crossref]

Other (4)

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983) Sec. 8.1, appendix B.

A. Messiah, Quantum Mechanics Vol. 1 (Wiley, New York, 1968) p. 490.

R. M. Eisberg, Fundamentals of Modern Physics (Wiley, New York, 1967) section 8.3.

J. R. Reitz, F. J. Milford, R. W. Christy, Foundations of Electromagnetic Theory (Addison-Wesley, Reading, MA, 1979) Sec. 18-5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Maximum value of the contribution of the = 46 partial wave to the angle-averaged electromagnetic energy density inside a coated sphere for the a 46 3 and b 46 3 scattering resonances as a function of the size parameter associated with the coating thickness Δ. The core and coating refractive indices are n1 = 1.47 and n2 = 1.65 respectively. The a 46 3 and b 46 3 resonances occur at differing core radii.

Fig. 2
Fig. 2

Maximum value of the contribution of the = 46 partial wave to the angle-averaged electromagnetic energy density inside a coated sphere for the a 46 3 and b 46 3 scattering resonances as a function of the size parameter associated with the coating thickness Δ. The core and coating refractive indices are n1 = 1.47 and n2 = 1.33 respectively and the units of the energy density are the same as in Fig. 1. The a 46 3 and b 46 3 resonances occur at differing core radii.

Fig. 3
Fig. 3

Maximum value of the contribution of the = 46 partial wave to the angle-averaged electromagnetic energy density inside a coated sphere for the b 46 1 , b 46 2, and b 46 3 scattering resonances as a function of the size parameter associated with the coating thickness Δ. The core and coating refractive indices are as in Fig. 1 and the units of the energy density are the same as in Figs. 1 and 2. The b 46 1 , b 46 2, and b 46 3 resonances occur at differing core radii.

Fig. 4
Fig. 4

The contribution of the = 46 partial wave to the angle-averaged electromagnetic energy density as a function of the distance from the center of the coated sphere for the N = 1 interference enhancement of the b 46 3 resonance for refractive index case I. The vertical line at r/B ≈ 0.964 denotes the core-coating interface.

Fig. 5
Fig. 5

The contribution of the = 46 partial wave to the angle-averaged electromagnetic energy density as a function of the distance from the center of the coated sphere for the N = 2 interference enhancement of the b 46 3 resonance for refractive index case I. The vertical line at r/B ≈ 0.890 denotes the core-coating interface.

Fig. 6
Fig. 6

The contribution of the = 46 partial wave to the angle-averaged electromagnetic energy density as a function of the distance from the center of the coated sphere for the N = 1 interference enhancement of the b 46 3 resonance for refractive index case II. The vertical line at r/B ≈ 0.896 denotes the core-coating interface.

Fig. 7
Fig. 7

The contribution of the = 46 partial wave to the angle-averaged electromagnetic energy density as a function of the distance from the center of the coated sphere for the N = 2 interference enhancement of the b 46 3 resonance for refractive index case II. The vertical line at r/B ≈ 0.766 denotes the core-coating interface.

Fig. 8
Fig. 8

A thin film and the reflected rays R1 and R2.

Fig. 9
Fig. 9

Two thin films in contact and the reflected rays R1, R2, and R3.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

a ( x ) = α ( x ) α ( x ) + i γ ( x )
b ( x ) = β ( x ) β ( x ) + i δ ( x )
c ( x ) = i α ( x ) + i γ ( x )
d ( x ) = i β ( x ) + i δ ( x ) ,
k = 2 π λ
x = k A
γ ( x p ) = 0
δ ( x p ) = 0 ,
( r ) = 1 4 π 0 π sin θ d θ 0 2 π d ϕ ( n 2 0 2 E * ( r ) · E ( r ) + 1 2 μ 0 B * ( r ) · B ( r ) )
B = A + Δ .
r B n 2 ,
n 1 k A = ( p - 1 / 2 ) π
R = ( n 1 2 - 1 2 n 1 ) sin 2 n 1 k A 1 + ( n 1 2 - 1 2 n 1 ) 2 sin 2 n 1 k A
E ( z ) 2 = ( 1 - ( n 1 2 - 1 n 1 2 ) sin 2 n 1 k ( z - A ) 1 + ( n 1 2 - 1 2 n 1 ) 2 sin 2 n 1 k A ) I inc
n 1 k A + n 2 k Δ = ( p - 1 / 2 ) π .
n 2 k Δ = ( N - 1 / 2 ) π
n 1 k A = ( p - N ) π
n 2 k Δ = N π
n 1 k A = ( p - N - 1 / 2 ) π .
R = 1 - 8 n 1 2 n 2 2 { [ 2 n 1 n 2 cos n 1 k A cos n 2 k Δ - ( n 1 2 + n 2 2 ) sin n 1 k A sin n 2 k Δ ] 2 + [ n 2 ( 1 + n 1 2 ) sin n 1 k A cos n 2 k Δ + n 1 ( 1 + n 2 2 ) cos n 1 k A sin n 2 k Δ ] 2 } - 1 .
tan n 1 k A tan n 2 k Δ = 2 n 1 n 2 n 1 2 + n 2 2 .
tan ( n 1 k A ) tan ( n 2 k Δ ) 1 ,

Metrics