Abstract

A small signal analysis of the noise figure spectral distribution in erbium doped fiber amplifiers pumped near 980 and 1480 nm is presented. In the case where signal-spontaneous beat noise is the dominant cause of signal-to-noise ratio (SNR) degradation, it is shown that noise figures in the ±0.2-dB range around the 3-dB quantum limit are possible within a spectral band of 50 nm, with the result applying to λp = 980-nm and λp = 1460-nm pump wavelengths. For λp > 1460 nm, a noise figure penalty of 0.5 to 1.2 dB above the quantum limit is found. This study thus demonstrates the possibility of quantum limited or near quantum limited noise regime for amplification of wavelength division multiplexed signals in erbium doped fibers.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Mears, L. Reekie, I. M. Jauncey, D. N. Payne, “Low Noise Erbium-Doped Fibre Amplifier Operating at 1.54 μm,” Electron. Lett. 23, 1026–1028 (1987).
    [Crossref]
  2. E. Desurvire, J. R. Simpson, P. C. Becker, “High-Gain Erbium-Doped Traveling-Wave Fiber Amplifier,” Opt. Lett. 12, 888–890 (1987).
    [Crossref] [PubMed]
  3. M. Nakazawa, Y. Kimura, K. Suzuhi, “Efficient Er3+-Doped Optical Fiber Amplifier Pumped by a 1.48-μm InGaAsP Laser Diode,” Appl. Phys. Lett. 54, 295–297 (1989).
    [Crossref]
  4. R. S. Vodhanel et al., “Highly Efficient 978-nm Diode-Pumped Erbium-Doped Fibre Amplifier with 24-dB Gain,” Electron. Lett. 25, 1386–1388 (1989).
    [Crossref]
  5. C. R. Giles, E. Desurvire, J. R. Talman, J. R. Simpson, P. C. Becker, “2 Gbit/s Signal Amplification at λ = 1.53 μm in an Erbium-Doped Single-Mode Fiber Amplifier,” IEEE/OSA J. Lightwave Technol. LT-7, 651–656 (1989).
    [Crossref]
  6. R. I. Laming, P. R. Morkel, D. N. Payne, L. Reekie, “Noise in Erbium-Doped Fibre Amplifiers,” Proc. 14th European Conference on Optical Communications, ECOC ’88, p 54 (1988).
  7. R. Olshansky, “Noise Figure for Erbium-Doped Optical Fibre Amplifier,” Electron. Lett. 24, 1363–1365 (1988).
    [Crossref]
  8. E. Desurvire, J. R. Simpson, “Amplification of Spontaneous Emission in Erbium-Doped Single-Mode Fibers,” IEEE/OSA J. Lightwave Technol. LT-7, 835–845 (1989).
    [Crossref]
  9. P. R. Morkel, R. I. Laming, “Theoretical Modeling of Erbium-Doped Fiber Amplifiers with Excited-State Absorption,” Opt. Lett. 14, 1062–1067 (1989).
    [Crossref] [PubMed]
  10. E. Desurvire, “Spectral Noise Figure of Er3+-Doped Fiber Amplifiers,” IEEE Photon. Technol. Lett., 2, 208 (1990).
    [Crossref]
  11. E. Desurvire, C. R. Giles, J. R. Simpson, “Gain Saturation Effects in High-Speed, Multichannel Erbium-Doped Fiber Amplifiers at λ = 1.53 μm,” IEEE/OSA J. Lightwave Technol. LT-7, 2095–2104 (1989).
    [Crossref]
  12. T. Saitoh, T. Mukai, “1.5-μm GaInAsP Traveling-Wave Semiconductor Laser Amplifiers,” IEEE J. Quantum Electron. QE-23, 1010–1019 (1987).
    [Crossref]
  13. E. Desurvire, “Analysis of Erbium-Doped Fiber Amplifiers Pumped in the 4I15/2 − 4I13/2 Band,” IEEE Photon. Technol. Lett. 1, 293–296 (1989).
    [Crossref]
  14. C. R. Giles, E. Desurvire, J. L. Zyskind, J. R. Simpson, “Noise Performance of Erbium-Doped Fiber Amplifier Pumped at 1.49 μm and Application to Signal Preamplification at 1.8 Gbit/s,” IEEE Photon. Technol. Lett. 1, 367–369 (1989).
    [Crossref]
  15. M. Sargent, M. O. Scully, W. E. Lamb, Laser Physics (Addison-Wesley, Reading, MA, 1974), Chap. 17. See also: R. Loudon, The Quantum Theory of Light, Second Ed. (Oxford Science, New York, 1983) Chap. 7.
  16. K. Shimoda, H. Takahasi, C. H. Townes, “Fluctuation in Amplification of Quanta with Application to Maser Amplifiers,” J. Phys. Soc. Jpn. 12, 686–700 (1957).
    [Crossref]
  17. Y. Yamamoto, “Noise and Error-Rate Performance of Semiconductor Laser Amplifiers in PCM-IM Optical Transmission Systems,” IEEE J. Quantum Electron. QE-16, 1073–1081 (1980).
    [Crossref]
  18. E. Desurvire, M. Tur, H. J. Shaw, “Signal-to-Noise Ratio in Raman Active Fiber Systems: Application to Recirculating Delay Lines,” IEEE/OSA J. Lightwave Technol. LT-4, 560–566 (1986).
    [Crossref]
  19. D. Marcuse, Principles of Quantum Electronics, Academic, New York (1980).
  20. R. J. Petitt, R. A. Baker, A. Hadjifotiou, “System Performance of Optical Fibre Preamplifier,” Electron. Lett. 25, 273–275 (1989).
    [Crossref]
  21. B. J. Ainslie, S. P. Craig, S. T. Davey, B. Wakefield, “The Fabrication Assessment and Optical Properties of High Concentration Nd3+ and Er3+-Doped Silica-Based Fibers,” Mater. Lett. 6, 139–144 (1988).
    [Crossref]
  22. C. G. Atkins, J. F. Massicot, J. R. Armitage, R. Wyatt, B. J. Ainslie, S. P. Craig-Ryan, “High Gain, Broad Spectral Bandwidth Erbium-Doped Fibre Amplifiers Pumped Near 1.5 μm,” Electron. Lett. 25, 910–911 (1989).
    [Crossref]
  23. D. Marcuse, “Computer Simulation of Laser Photon Fluctuations: Theory of Single Cavity Laser,” IEEE J. Quantum Electron. QE-20, 1139–1155 (1984).
    [Crossref]

1990 (1)

E. Desurvire, “Spectral Noise Figure of Er3+-Doped Fiber Amplifiers,” IEEE Photon. Technol. Lett., 2, 208 (1990).
[Crossref]

1989 (10)

E. Desurvire, C. R. Giles, J. R. Simpson, “Gain Saturation Effects in High-Speed, Multichannel Erbium-Doped Fiber Amplifiers at λ = 1.53 μm,” IEEE/OSA J. Lightwave Technol. LT-7, 2095–2104 (1989).
[Crossref]

E. Desurvire, “Analysis of Erbium-Doped Fiber Amplifiers Pumped in the 4I15/2 − 4I13/2 Band,” IEEE Photon. Technol. Lett. 1, 293–296 (1989).
[Crossref]

C. R. Giles, E. Desurvire, J. L. Zyskind, J. R. Simpson, “Noise Performance of Erbium-Doped Fiber Amplifier Pumped at 1.49 μm and Application to Signal Preamplification at 1.8 Gbit/s,” IEEE Photon. Technol. Lett. 1, 367–369 (1989).
[Crossref]

R. J. Petitt, R. A. Baker, A. Hadjifotiou, “System Performance of Optical Fibre Preamplifier,” Electron. Lett. 25, 273–275 (1989).
[Crossref]

M. Nakazawa, Y. Kimura, K. Suzuhi, “Efficient Er3+-Doped Optical Fiber Amplifier Pumped by a 1.48-μm InGaAsP Laser Diode,” Appl. Phys. Lett. 54, 295–297 (1989).
[Crossref]

R. S. Vodhanel et al., “Highly Efficient 978-nm Diode-Pumped Erbium-Doped Fibre Amplifier with 24-dB Gain,” Electron. Lett. 25, 1386–1388 (1989).
[Crossref]

C. R. Giles, E. Desurvire, J. R. Talman, J. R. Simpson, P. C. Becker, “2 Gbit/s Signal Amplification at λ = 1.53 μm in an Erbium-Doped Single-Mode Fiber Amplifier,” IEEE/OSA J. Lightwave Technol. LT-7, 651–656 (1989).
[Crossref]

E. Desurvire, J. R. Simpson, “Amplification of Spontaneous Emission in Erbium-Doped Single-Mode Fibers,” IEEE/OSA J. Lightwave Technol. LT-7, 835–845 (1989).
[Crossref]

P. R. Morkel, R. I. Laming, “Theoretical Modeling of Erbium-Doped Fiber Amplifiers with Excited-State Absorption,” Opt. Lett. 14, 1062–1067 (1989).
[Crossref] [PubMed]

C. G. Atkins, J. F. Massicot, J. R. Armitage, R. Wyatt, B. J. Ainslie, S. P. Craig-Ryan, “High Gain, Broad Spectral Bandwidth Erbium-Doped Fibre Amplifiers Pumped Near 1.5 μm,” Electron. Lett. 25, 910–911 (1989).
[Crossref]

1988 (3)

R. I. Laming, P. R. Morkel, D. N. Payne, L. Reekie, “Noise in Erbium-Doped Fibre Amplifiers,” Proc. 14th European Conference on Optical Communications, ECOC ’88, p 54 (1988).

R. Olshansky, “Noise Figure for Erbium-Doped Optical Fibre Amplifier,” Electron. Lett. 24, 1363–1365 (1988).
[Crossref]

B. J. Ainslie, S. P. Craig, S. T. Davey, B. Wakefield, “The Fabrication Assessment and Optical Properties of High Concentration Nd3+ and Er3+-Doped Silica-Based Fibers,” Mater. Lett. 6, 139–144 (1988).
[Crossref]

1987 (3)

T. Saitoh, T. Mukai, “1.5-μm GaInAsP Traveling-Wave Semiconductor Laser Amplifiers,” IEEE J. Quantum Electron. QE-23, 1010–1019 (1987).
[Crossref]

R. J. Mears, L. Reekie, I. M. Jauncey, D. N. Payne, “Low Noise Erbium-Doped Fibre Amplifier Operating at 1.54 μm,” Electron. Lett. 23, 1026–1028 (1987).
[Crossref]

E. Desurvire, J. R. Simpson, P. C. Becker, “High-Gain Erbium-Doped Traveling-Wave Fiber Amplifier,” Opt. Lett. 12, 888–890 (1987).
[Crossref] [PubMed]

1986 (1)

E. Desurvire, M. Tur, H. J. Shaw, “Signal-to-Noise Ratio in Raman Active Fiber Systems: Application to Recirculating Delay Lines,” IEEE/OSA J. Lightwave Technol. LT-4, 560–566 (1986).
[Crossref]

1984 (1)

D. Marcuse, “Computer Simulation of Laser Photon Fluctuations: Theory of Single Cavity Laser,” IEEE J. Quantum Electron. QE-20, 1139–1155 (1984).
[Crossref]

1980 (1)

Y. Yamamoto, “Noise and Error-Rate Performance of Semiconductor Laser Amplifiers in PCM-IM Optical Transmission Systems,” IEEE J. Quantum Electron. QE-16, 1073–1081 (1980).
[Crossref]

1957 (1)

K. Shimoda, H. Takahasi, C. H. Townes, “Fluctuation in Amplification of Quanta with Application to Maser Amplifiers,” J. Phys. Soc. Jpn. 12, 686–700 (1957).
[Crossref]

Ainslie, B. J.

C. G. Atkins, J. F. Massicot, J. R. Armitage, R. Wyatt, B. J. Ainslie, S. P. Craig-Ryan, “High Gain, Broad Spectral Bandwidth Erbium-Doped Fibre Amplifiers Pumped Near 1.5 μm,” Electron. Lett. 25, 910–911 (1989).
[Crossref]

B. J. Ainslie, S. P. Craig, S. T. Davey, B. Wakefield, “The Fabrication Assessment and Optical Properties of High Concentration Nd3+ and Er3+-Doped Silica-Based Fibers,” Mater. Lett. 6, 139–144 (1988).
[Crossref]

Armitage, J. R.

C. G. Atkins, J. F. Massicot, J. R. Armitage, R. Wyatt, B. J. Ainslie, S. P. Craig-Ryan, “High Gain, Broad Spectral Bandwidth Erbium-Doped Fibre Amplifiers Pumped Near 1.5 μm,” Electron. Lett. 25, 910–911 (1989).
[Crossref]

Atkins, C. G.

C. G. Atkins, J. F. Massicot, J. R. Armitage, R. Wyatt, B. J. Ainslie, S. P. Craig-Ryan, “High Gain, Broad Spectral Bandwidth Erbium-Doped Fibre Amplifiers Pumped Near 1.5 μm,” Electron. Lett. 25, 910–911 (1989).
[Crossref]

Baker, R. A.

R. J. Petitt, R. A. Baker, A. Hadjifotiou, “System Performance of Optical Fibre Preamplifier,” Electron. Lett. 25, 273–275 (1989).
[Crossref]

Becker, P. C.

C. R. Giles, E. Desurvire, J. R. Talman, J. R. Simpson, P. C. Becker, “2 Gbit/s Signal Amplification at λ = 1.53 μm in an Erbium-Doped Single-Mode Fiber Amplifier,” IEEE/OSA J. Lightwave Technol. LT-7, 651–656 (1989).
[Crossref]

E. Desurvire, J. R. Simpson, P. C. Becker, “High-Gain Erbium-Doped Traveling-Wave Fiber Amplifier,” Opt. Lett. 12, 888–890 (1987).
[Crossref] [PubMed]

Craig, S. P.

B. J. Ainslie, S. P. Craig, S. T. Davey, B. Wakefield, “The Fabrication Assessment and Optical Properties of High Concentration Nd3+ and Er3+-Doped Silica-Based Fibers,” Mater. Lett. 6, 139–144 (1988).
[Crossref]

Craig-Ryan, S. P.

C. G. Atkins, J. F. Massicot, J. R. Armitage, R. Wyatt, B. J. Ainslie, S. P. Craig-Ryan, “High Gain, Broad Spectral Bandwidth Erbium-Doped Fibre Amplifiers Pumped Near 1.5 μm,” Electron. Lett. 25, 910–911 (1989).
[Crossref]

Davey, S. T.

B. J. Ainslie, S. P. Craig, S. T. Davey, B. Wakefield, “The Fabrication Assessment and Optical Properties of High Concentration Nd3+ and Er3+-Doped Silica-Based Fibers,” Mater. Lett. 6, 139–144 (1988).
[Crossref]

Desurvire, E.

E. Desurvire, “Spectral Noise Figure of Er3+-Doped Fiber Amplifiers,” IEEE Photon. Technol. Lett., 2, 208 (1990).
[Crossref]

E. Desurvire, C. R. Giles, J. R. Simpson, “Gain Saturation Effects in High-Speed, Multichannel Erbium-Doped Fiber Amplifiers at λ = 1.53 μm,” IEEE/OSA J. Lightwave Technol. LT-7, 2095–2104 (1989).
[Crossref]

E. Desurvire, J. R. Simpson, “Amplification of Spontaneous Emission in Erbium-Doped Single-Mode Fibers,” IEEE/OSA J. Lightwave Technol. LT-7, 835–845 (1989).
[Crossref]

E. Desurvire, “Analysis of Erbium-Doped Fiber Amplifiers Pumped in the 4I15/2 − 4I13/2 Band,” IEEE Photon. Technol. Lett. 1, 293–296 (1989).
[Crossref]

C. R. Giles, E. Desurvire, J. L. Zyskind, J. R. Simpson, “Noise Performance of Erbium-Doped Fiber Amplifier Pumped at 1.49 μm and Application to Signal Preamplification at 1.8 Gbit/s,” IEEE Photon. Technol. Lett. 1, 367–369 (1989).
[Crossref]

C. R. Giles, E. Desurvire, J. R. Talman, J. R. Simpson, P. C. Becker, “2 Gbit/s Signal Amplification at λ = 1.53 μm in an Erbium-Doped Single-Mode Fiber Amplifier,” IEEE/OSA J. Lightwave Technol. LT-7, 651–656 (1989).
[Crossref]

E. Desurvire, J. R. Simpson, P. C. Becker, “High-Gain Erbium-Doped Traveling-Wave Fiber Amplifier,” Opt. Lett. 12, 888–890 (1987).
[Crossref] [PubMed]

E. Desurvire, M. Tur, H. J. Shaw, “Signal-to-Noise Ratio in Raman Active Fiber Systems: Application to Recirculating Delay Lines,” IEEE/OSA J. Lightwave Technol. LT-4, 560–566 (1986).
[Crossref]

Giles, C. R.

C. R. Giles, E. Desurvire, J. L. Zyskind, J. R. Simpson, “Noise Performance of Erbium-Doped Fiber Amplifier Pumped at 1.49 μm and Application to Signal Preamplification at 1.8 Gbit/s,” IEEE Photon. Technol. Lett. 1, 367–369 (1989).
[Crossref]

C. R. Giles, E. Desurvire, J. R. Talman, J. R. Simpson, P. C. Becker, “2 Gbit/s Signal Amplification at λ = 1.53 μm in an Erbium-Doped Single-Mode Fiber Amplifier,” IEEE/OSA J. Lightwave Technol. LT-7, 651–656 (1989).
[Crossref]

E. Desurvire, C. R. Giles, J. R. Simpson, “Gain Saturation Effects in High-Speed, Multichannel Erbium-Doped Fiber Amplifiers at λ = 1.53 μm,” IEEE/OSA J. Lightwave Technol. LT-7, 2095–2104 (1989).
[Crossref]

Hadjifotiou, A.

R. J. Petitt, R. A. Baker, A. Hadjifotiou, “System Performance of Optical Fibre Preamplifier,” Electron. Lett. 25, 273–275 (1989).
[Crossref]

Jauncey, I. M.

R. J. Mears, L. Reekie, I. M. Jauncey, D. N. Payne, “Low Noise Erbium-Doped Fibre Amplifier Operating at 1.54 μm,” Electron. Lett. 23, 1026–1028 (1987).
[Crossref]

Kimura, Y.

M. Nakazawa, Y. Kimura, K. Suzuhi, “Efficient Er3+-Doped Optical Fiber Amplifier Pumped by a 1.48-μm InGaAsP Laser Diode,” Appl. Phys. Lett. 54, 295–297 (1989).
[Crossref]

Lamb, W. E.

M. Sargent, M. O. Scully, W. E. Lamb, Laser Physics (Addison-Wesley, Reading, MA, 1974), Chap. 17. See also: R. Loudon, The Quantum Theory of Light, Second Ed. (Oxford Science, New York, 1983) Chap. 7.

Laming, R. I.

P. R. Morkel, R. I. Laming, “Theoretical Modeling of Erbium-Doped Fiber Amplifiers with Excited-State Absorption,” Opt. Lett. 14, 1062–1067 (1989).
[Crossref] [PubMed]

R. I. Laming, P. R. Morkel, D. N. Payne, L. Reekie, “Noise in Erbium-Doped Fibre Amplifiers,” Proc. 14th European Conference on Optical Communications, ECOC ’88, p 54 (1988).

Marcuse, D.

D. Marcuse, “Computer Simulation of Laser Photon Fluctuations: Theory of Single Cavity Laser,” IEEE J. Quantum Electron. QE-20, 1139–1155 (1984).
[Crossref]

D. Marcuse, Principles of Quantum Electronics, Academic, New York (1980).

Massicot, J. F.

C. G. Atkins, J. F. Massicot, J. R. Armitage, R. Wyatt, B. J. Ainslie, S. P. Craig-Ryan, “High Gain, Broad Spectral Bandwidth Erbium-Doped Fibre Amplifiers Pumped Near 1.5 μm,” Electron. Lett. 25, 910–911 (1989).
[Crossref]

Mears, R. J.

R. J. Mears, L. Reekie, I. M. Jauncey, D. N. Payne, “Low Noise Erbium-Doped Fibre Amplifier Operating at 1.54 μm,” Electron. Lett. 23, 1026–1028 (1987).
[Crossref]

Morkel, P. R.

P. R. Morkel, R. I. Laming, “Theoretical Modeling of Erbium-Doped Fiber Amplifiers with Excited-State Absorption,” Opt. Lett. 14, 1062–1067 (1989).
[Crossref] [PubMed]

R. I. Laming, P. R. Morkel, D. N. Payne, L. Reekie, “Noise in Erbium-Doped Fibre Amplifiers,” Proc. 14th European Conference on Optical Communications, ECOC ’88, p 54 (1988).

Mukai, T.

T. Saitoh, T. Mukai, “1.5-μm GaInAsP Traveling-Wave Semiconductor Laser Amplifiers,” IEEE J. Quantum Electron. QE-23, 1010–1019 (1987).
[Crossref]

Nakazawa, M.

M. Nakazawa, Y. Kimura, K. Suzuhi, “Efficient Er3+-Doped Optical Fiber Amplifier Pumped by a 1.48-μm InGaAsP Laser Diode,” Appl. Phys. Lett. 54, 295–297 (1989).
[Crossref]

Olshansky, R.

R. Olshansky, “Noise Figure for Erbium-Doped Optical Fibre Amplifier,” Electron. Lett. 24, 1363–1365 (1988).
[Crossref]

Payne, D. N.

R. I. Laming, P. R. Morkel, D. N. Payne, L. Reekie, “Noise in Erbium-Doped Fibre Amplifiers,” Proc. 14th European Conference on Optical Communications, ECOC ’88, p 54 (1988).

R. J. Mears, L. Reekie, I. M. Jauncey, D. N. Payne, “Low Noise Erbium-Doped Fibre Amplifier Operating at 1.54 μm,” Electron. Lett. 23, 1026–1028 (1987).
[Crossref]

Petitt, R. J.

R. J. Petitt, R. A. Baker, A. Hadjifotiou, “System Performance of Optical Fibre Preamplifier,” Electron. Lett. 25, 273–275 (1989).
[Crossref]

Reekie, L.

R. I. Laming, P. R. Morkel, D. N. Payne, L. Reekie, “Noise in Erbium-Doped Fibre Amplifiers,” Proc. 14th European Conference on Optical Communications, ECOC ’88, p 54 (1988).

R. J. Mears, L. Reekie, I. M. Jauncey, D. N. Payne, “Low Noise Erbium-Doped Fibre Amplifier Operating at 1.54 μm,” Electron. Lett. 23, 1026–1028 (1987).
[Crossref]

Saitoh, T.

T. Saitoh, T. Mukai, “1.5-μm GaInAsP Traveling-Wave Semiconductor Laser Amplifiers,” IEEE J. Quantum Electron. QE-23, 1010–1019 (1987).
[Crossref]

Sargent, M.

M. Sargent, M. O. Scully, W. E. Lamb, Laser Physics (Addison-Wesley, Reading, MA, 1974), Chap. 17. See also: R. Loudon, The Quantum Theory of Light, Second Ed. (Oxford Science, New York, 1983) Chap. 7.

Scully, M. O.

M. Sargent, M. O. Scully, W. E. Lamb, Laser Physics (Addison-Wesley, Reading, MA, 1974), Chap. 17. See also: R. Loudon, The Quantum Theory of Light, Second Ed. (Oxford Science, New York, 1983) Chap. 7.

Shaw, H. J.

E. Desurvire, M. Tur, H. J. Shaw, “Signal-to-Noise Ratio in Raman Active Fiber Systems: Application to Recirculating Delay Lines,” IEEE/OSA J. Lightwave Technol. LT-4, 560–566 (1986).
[Crossref]

Shimoda, K.

K. Shimoda, H. Takahasi, C. H. Townes, “Fluctuation in Amplification of Quanta with Application to Maser Amplifiers,” J. Phys. Soc. Jpn. 12, 686–700 (1957).
[Crossref]

Simpson, J. R.

C. R. Giles, E. Desurvire, J. L. Zyskind, J. R. Simpson, “Noise Performance of Erbium-Doped Fiber Amplifier Pumped at 1.49 μm and Application to Signal Preamplification at 1.8 Gbit/s,” IEEE Photon. Technol. Lett. 1, 367–369 (1989).
[Crossref]

E. Desurvire, C. R. Giles, J. R. Simpson, “Gain Saturation Effects in High-Speed, Multichannel Erbium-Doped Fiber Amplifiers at λ = 1.53 μm,” IEEE/OSA J. Lightwave Technol. LT-7, 2095–2104 (1989).
[Crossref]

C. R. Giles, E. Desurvire, J. R. Talman, J. R. Simpson, P. C. Becker, “2 Gbit/s Signal Amplification at λ = 1.53 μm in an Erbium-Doped Single-Mode Fiber Amplifier,” IEEE/OSA J. Lightwave Technol. LT-7, 651–656 (1989).
[Crossref]

E. Desurvire, J. R. Simpson, “Amplification of Spontaneous Emission in Erbium-Doped Single-Mode Fibers,” IEEE/OSA J. Lightwave Technol. LT-7, 835–845 (1989).
[Crossref]

E. Desurvire, J. R. Simpson, P. C. Becker, “High-Gain Erbium-Doped Traveling-Wave Fiber Amplifier,” Opt. Lett. 12, 888–890 (1987).
[Crossref] [PubMed]

Suzuhi, K.

M. Nakazawa, Y. Kimura, K. Suzuhi, “Efficient Er3+-Doped Optical Fiber Amplifier Pumped by a 1.48-μm InGaAsP Laser Diode,” Appl. Phys. Lett. 54, 295–297 (1989).
[Crossref]

Takahasi, H.

K. Shimoda, H. Takahasi, C. H. Townes, “Fluctuation in Amplification of Quanta with Application to Maser Amplifiers,” J. Phys. Soc. Jpn. 12, 686–700 (1957).
[Crossref]

Talman, J. R.

C. R. Giles, E. Desurvire, J. R. Talman, J. R. Simpson, P. C. Becker, “2 Gbit/s Signal Amplification at λ = 1.53 μm in an Erbium-Doped Single-Mode Fiber Amplifier,” IEEE/OSA J. Lightwave Technol. LT-7, 651–656 (1989).
[Crossref]

Townes, C. H.

K. Shimoda, H. Takahasi, C. H. Townes, “Fluctuation in Amplification of Quanta with Application to Maser Amplifiers,” J. Phys. Soc. Jpn. 12, 686–700 (1957).
[Crossref]

Tur, M.

E. Desurvire, M. Tur, H. J. Shaw, “Signal-to-Noise Ratio in Raman Active Fiber Systems: Application to Recirculating Delay Lines,” IEEE/OSA J. Lightwave Technol. LT-4, 560–566 (1986).
[Crossref]

Vodhanel, R. S.

R. S. Vodhanel et al., “Highly Efficient 978-nm Diode-Pumped Erbium-Doped Fibre Amplifier with 24-dB Gain,” Electron. Lett. 25, 1386–1388 (1989).
[Crossref]

Wakefield, B.

B. J. Ainslie, S. P. Craig, S. T. Davey, B. Wakefield, “The Fabrication Assessment and Optical Properties of High Concentration Nd3+ and Er3+-Doped Silica-Based Fibers,” Mater. Lett. 6, 139–144 (1988).
[Crossref]

Wyatt, R.

C. G. Atkins, J. F. Massicot, J. R. Armitage, R. Wyatt, B. J. Ainslie, S. P. Craig-Ryan, “High Gain, Broad Spectral Bandwidth Erbium-Doped Fibre Amplifiers Pumped Near 1.5 μm,” Electron. Lett. 25, 910–911 (1989).
[Crossref]

Yamamoto, Y.

Y. Yamamoto, “Noise and Error-Rate Performance of Semiconductor Laser Amplifiers in PCM-IM Optical Transmission Systems,” IEEE J. Quantum Electron. QE-16, 1073–1081 (1980).
[Crossref]

Zyskind, J. L.

C. R. Giles, E. Desurvire, J. L. Zyskind, J. R. Simpson, “Noise Performance of Erbium-Doped Fiber Amplifier Pumped at 1.49 μm and Application to Signal Preamplification at 1.8 Gbit/s,” IEEE Photon. Technol. Lett. 1, 367–369 (1989).
[Crossref]

Appl. Phys. Lett. (1)

M. Nakazawa, Y. Kimura, K. Suzuhi, “Efficient Er3+-Doped Optical Fiber Amplifier Pumped by a 1.48-μm InGaAsP Laser Diode,” Appl. Phys. Lett. 54, 295–297 (1989).
[Crossref]

Electron. Lett. (5)

R. S. Vodhanel et al., “Highly Efficient 978-nm Diode-Pumped Erbium-Doped Fibre Amplifier with 24-dB Gain,” Electron. Lett. 25, 1386–1388 (1989).
[Crossref]

R. J. Mears, L. Reekie, I. M. Jauncey, D. N. Payne, “Low Noise Erbium-Doped Fibre Amplifier Operating at 1.54 μm,” Electron. Lett. 23, 1026–1028 (1987).
[Crossref]

R. Olshansky, “Noise Figure for Erbium-Doped Optical Fibre Amplifier,” Electron. Lett. 24, 1363–1365 (1988).
[Crossref]

R. J. Petitt, R. A. Baker, A. Hadjifotiou, “System Performance of Optical Fibre Preamplifier,” Electron. Lett. 25, 273–275 (1989).
[Crossref]

C. G. Atkins, J. F. Massicot, J. R. Armitage, R. Wyatt, B. J. Ainslie, S. P. Craig-Ryan, “High Gain, Broad Spectral Bandwidth Erbium-Doped Fibre Amplifiers Pumped Near 1.5 μm,” Electron. Lett. 25, 910–911 (1989).
[Crossref]

IEEE J. Quantum Electron. (3)

D. Marcuse, “Computer Simulation of Laser Photon Fluctuations: Theory of Single Cavity Laser,” IEEE J. Quantum Electron. QE-20, 1139–1155 (1984).
[Crossref]

T. Saitoh, T. Mukai, “1.5-μm GaInAsP Traveling-Wave Semiconductor Laser Amplifiers,” IEEE J. Quantum Electron. QE-23, 1010–1019 (1987).
[Crossref]

Y. Yamamoto, “Noise and Error-Rate Performance of Semiconductor Laser Amplifiers in PCM-IM Optical Transmission Systems,” IEEE J. Quantum Electron. QE-16, 1073–1081 (1980).
[Crossref]

IEEE Photon. Technol. Lett. (3)

E. Desurvire, “Spectral Noise Figure of Er3+-Doped Fiber Amplifiers,” IEEE Photon. Technol. Lett., 2, 208 (1990).
[Crossref]

E. Desurvire, “Analysis of Erbium-Doped Fiber Amplifiers Pumped in the 4I15/2 − 4I13/2 Band,” IEEE Photon. Technol. Lett. 1, 293–296 (1989).
[Crossref]

C. R. Giles, E. Desurvire, J. L. Zyskind, J. R. Simpson, “Noise Performance of Erbium-Doped Fiber Amplifier Pumped at 1.49 μm and Application to Signal Preamplification at 1.8 Gbit/s,” IEEE Photon. Technol. Lett. 1, 367–369 (1989).
[Crossref]

IEEE/OSA J. Lightwave Technol. (4)

E. Desurvire, C. R. Giles, J. R. Simpson, “Gain Saturation Effects in High-Speed, Multichannel Erbium-Doped Fiber Amplifiers at λ = 1.53 μm,” IEEE/OSA J. Lightwave Technol. LT-7, 2095–2104 (1989).
[Crossref]

E. Desurvire, M. Tur, H. J. Shaw, “Signal-to-Noise Ratio in Raman Active Fiber Systems: Application to Recirculating Delay Lines,” IEEE/OSA J. Lightwave Technol. LT-4, 560–566 (1986).
[Crossref]

E. Desurvire, J. R. Simpson, “Amplification of Spontaneous Emission in Erbium-Doped Single-Mode Fibers,” IEEE/OSA J. Lightwave Technol. LT-7, 835–845 (1989).
[Crossref]

C. R. Giles, E. Desurvire, J. R. Talman, J. R. Simpson, P. C. Becker, “2 Gbit/s Signal Amplification at λ = 1.53 μm in an Erbium-Doped Single-Mode Fiber Amplifier,” IEEE/OSA J. Lightwave Technol. LT-7, 651–656 (1989).
[Crossref]

J. Phys. Soc. Jpn. (1)

K. Shimoda, H. Takahasi, C. H. Townes, “Fluctuation in Amplification of Quanta with Application to Maser Amplifiers,” J. Phys. Soc. Jpn. 12, 686–700 (1957).
[Crossref]

Mater. Lett. (1)

B. J. Ainslie, S. P. Craig, S. T. Davey, B. Wakefield, “The Fabrication Assessment and Optical Properties of High Concentration Nd3+ and Er3+-Doped Silica-Based Fibers,” Mater. Lett. 6, 139–144 (1988).
[Crossref]

Opt. Lett. (2)

Proc. 14th European Conference on Optical Communications, ECOC ’88 (1)

R. I. Laming, P. R. Morkel, D. N. Payne, L. Reekie, “Noise in Erbium-Doped Fibre Amplifiers,” Proc. 14th European Conference on Optical Communications, ECOC ’88, p 54 (1988).

Other (2)

D. Marcuse, Principles of Quantum Electronics, Academic, New York (1980).

M. Sargent, M. O. Scully, W. E. Lamb, Laser Physics (Addison-Wesley, Reading, MA, 1974), Chap. 17. See also: R. Loudon, The Quantum Theory of Light, Second Ed. (Oxford Science, New York, 1983) Chap. 7.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Typical absorption and fluorescence cross-section spectra around λ s = 1.53 μm corresponding to alumina silicate Er-doped glass fibers (after Ref. 13).

Fig. 2
Fig. 2

Total output ASE power in one polarization mode vs fiber length L with λ p = 980-nm pump, calculated with unsaturated gain model (full lines) and with saturated gain model (dashed lines), Each pair of curves corresponds to backward pumping (top curve) and forward pumping (bottom curve). The parameter γ is the input pump power normalized to the pump threshold.

Fig. 3
Fig. 3

Gain spectra with λ p = 980 nm corresponding to different input pump power conditions.

Fig. 4
Fig. 4

Spectral ASE photon number spectral density corresponding to the forward (a) and backward (b) pumping schemes, for values of normalized input pump power γ = 0.2–50, with λ p = 980 nm.

Fig. 5
Fig. 5

Spontaneous emission factor spectrum nsp corresponding to the forward (full lines) and backward (dashed lines) pumping schemes for values of normalized input pump power γ = 2.5–50, with λ p = 980 nm.

Fig. 6
Fig. 6

Noise figure spectra corresponding to the forward (a) and backward (b) pumping schemes, for values of normalized input pump power γ = 0–50, with λ p = 980 nm.

Fig. 7
Fig. 7

Noise figure spectra shown for the higher pump regimes of Fig. 6 i.e., γ = 2.5–50 with λ p = 980 nm. For the two last cases (γ ≥ 20), the noise figure is within 0.2 dB of the 2 dB signal spontaneous beat noise quantum limit over a spectral range of ~50 nm.

Fig. 8
Fig. 8

Gain spectra for pump wavelengths λ p = 1.46 μm − 1.50 μm with normalized input pump power γ = 10 (a) and γ = 50 (b).

Fig. 9
Fig. 9

Noise figure spectra for pump wavelengths λ p = 1.46 μm − 1.50 μm with normalized input pump power γ = 10 (a) and γ = 50 (b).

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

d P n ( z , ν ) d z = - [ ( σ e N 2 + σ a N 1 ) n + σ e N 2 ] P n ( z , ν ) + σ e N 2 n P n - 1 ( z , ν ) + σ a N 1 ( n + 1 ) P n + 1 ( z , ν ) .
d n ¯ ( z , ν ) d z = σ e N 2 ( n ¯ + 1 ) - σ a N 1 n ¯ ,
d n 2 ¯ ( z , ν ) d z = σ e N 2 ( 2 n 2 ¯ + 3 n ¯ + 1 ) - σ a N 1 ( 2 n 2 ¯ - n ¯ ) .
Σ 2 ( z , ν ) = G 2 ( z , ν ) [ Σ 2 ( o ) - n ( o ) ] + [ G ( z , ν ) n ( o ) + N ( z , ν ) ] + [ 2 G ( z , ν ) n ( o ) N ( z , ν ) + N 2 ( z , ν ) ] ,
G ( z , ν ) = exp o z [ σ e ( ν ) N 2 ( z ) - σ a ( ν ) N 1 ( z ) ] d z ,
N ( z , ν ) = G ( z , ν ) 0 z σ e ( ν ) N 2 ( z ) G ( z , ν ) d z .
n sp ( z , ν ) = N ( z , ν ) G ( z , ν ) - 1 = G ( z , ν ) G ( z , ν ) - 1 0 z σ e ( ν ) N 2 ( z ) G ( z , ν ) d z .
F o ( L , ν ) = SNR in SNR out 2 N ( L , ν ) + 1 G ( L , ν ) = 2 n sp ( L , ν ) [ G ( L , ν ) - 1 ] + 1 G ( L , ν ) .
F D 2 N ( ν s ) + [ η C η D η F ( ν s ) ] - 1 G ( ν s ) ,
n ¯ ( z ) = G n ( o ) + N ,
n 2 ¯ ( z ) = G 2 n 2 ( o ) ¯ + G 0 z [ 3 σ e N 2 ( z ) + σ 2 N 1 ( z ) ] n ¯ ( z ) + σ e N 2 ( z ) G 2 ( z ) d z .
n 2 ( z ) ¯ = G 2 ( z ) n 2 ( o ) ¯ + G [ 4 N ( z ) - G ( z ) + 1 ] n ¯ ( o ) + N ( z ) [ 2 N ( z ) + 1 ] .
( 4 N - G + 1 ) G = 0 z 3 σ e N 2 + σ a N 1 G d z ,
N ( 2 N + 1 ) G 2 = 0 z ( 3 σ e N 2 + σ a N 1 ) N + σ e N 2 G 2 d z .
Σ 2 ( z ) = n 2 ( z ) ¯ - n ( z ) 2 = G 2 Σ 2 ( o ) + n ( o ) G ( 2 N - G + 1 ) + N ( N + 1 ) ,
F o ( z ) = SNR in SNR out = n ( o ) 2 Σ 2 ( o ) Σ 2 ( z ) G 2 n ( o ) 2 .
F o ( z ) = 2 N ( z ) + 1 G ( z ) + N ( z ) [ N ( z ) + 1 ] G 2 ( z ) n ( o ) ,
n ¯ D = η C η D ν η F ( ν ) [ G ( ν ) n o ¯ ( ν ) + N ( ν ) ] = n ¯ D ( signal ) + n ¯ D ( noise ) ,
σ D 2 = η C η D ν η F ( ν ) [ G ( ν ) n o ¯ ( ν ) + N ( ν ) ] + η C 2 η D 2 ν η F 2 ( ν ) [ 2 G ( ν ) n o ¯ ( ν ) N + N 2 ( ν ) ] + σ th 2 ,
1 SNR out = 2 N ( ν s ) + [ η C η D η F ( ν s ) ] - 1 G ( ν s ) n ¯ o + ν η F ( ν ) N ( ν ) [ η C - 1 η D - 1 + η F ( ν ) N ( ν ) ] η F 2 ( ( ν s ) ) G 2 ( ν s ) n ¯ o 2 + σ th 2 / [ η C η D η F ( ν s ) G ( ν s ) n ¯ 0 ] 2 .
F D = 2 N ( ν s ) + [ η C η D η F ( ν s ) ] - 1 G ( ν s ) + ν η F ( ν ) N ( ν ) [ η C - 1 η D - 1 + η F ( ν ) N ( ν ) ] η F 2 ( ν s ) G ( ν s ) 2 n ¯ o + σ th 2 η C 2 η D 2 η F 2 ( ν s ) n o ¯ .

Metrics