Abstract

An optical tunnel configuration can perform crossover operations applicable to optical digital computing.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Shono, T. Inuzuka, “New Image Transmission Method Using Planar Plates and Rectangular Fibers,” Appl. Opt. 24, 361–364 (1985).
    [CrossRef] [PubMed]
  2. L. J. Krolak, D. J. Parker, “The Optical Tunnel—A Versatile Electrooptical Tool,” J. Soc. Motion Pict. Telev. Eng. 72, 177–180 (1963).
  3. J. R. Jenness, “Focus Correction for a CRT Color Facsimile System,” Appl. Opt. 23, 529–536 (1984).
    [CrossRef] [PubMed]
  4. J. Jahns, M. J. Murdocca, “Crossover Networks and Their Optical Implementation,” Appl. Opt. 27, 3155–3160 (1988).
    [CrossRef] [PubMed]

1988 (1)

1985 (1)

1984 (1)

1963 (1)

L. J. Krolak, D. J. Parker, “The Optical Tunnel—A Versatile Electrooptical Tool,” J. Soc. Motion Pict. Telev. Eng. 72, 177–180 (1963).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Optical tunnel for superimposing images of multiple objects.

Fig. 2
Fig. 2

Ray tracing at the optical-tunnel entrance.

Fig. 3
Fig. 3

Optical typewriter.

Fig. 4
Fig. 4

Integrated tunnel–lens options.

Fig. 5
Fig. 5

Low-order images.

Fig. 6
Fig. 6

Crossover operations.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

sin θ 1 = n sin θ 2 .
sin π / 2 = 1 = n sin θ m ,
θ 3 = π / 2 - θ 2 .
θ 2 = sin - 1 ( 1 / n ) , θ 3 = π / 2 - sin - 1 ( 1 / n ) .
θ 3 sin - 1 ( 1 / n ) .
sin - 1 ( 1 / n ) = π / 2 - sin - 1 ( 1 / n )
sin - 1 ( 1 / n ) = π / 4.
n min = 1 sin ( π / 4 ) = 2 .
θ 2 = sin - 1 ( sin θ e n ) , θ 3 = π / 2 - sin - 1 ( sin θ e n ) .
sin - 1 ( 1 / n ) = π / 2 - sin - 1 ( sin θ e n ) .
sin - 1 ( n c / n p ) = π / 2 - sin - 1 ( n c n p sin θ e ) ,
n p / n c = 1 + sin 2 θ e .

Metrics