Abstract

A surface plasmon based chemooptical sensor has been optimized by the use of computer simulation programs. Calculated and experimentally measured performances are in good agreement, showing the value of the simulation tool.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Nylander, B. Liedberg, T. Lind, “Gas Detection by Means of Surface Plasmon Resonance,” Sensors and Actuators 3, 79–88 (1982).
    [CrossRef]
  2. H. J. M. Kreuwel, P. V. Lambeck, J. van Gent, Th.J.A. Popma, “Surface Plasmon Dispersion and Luminescence Quenching applied to Planar Waveguide Sensors for the Measurement of Chemical Concentrations,” Proc. Soc. Photo-Opt. Instrum. Eng. 798, 218–224 (1987).
  3. E. Burstein, A. Hartstein, J. Schoenwald, A. A. Maradudin, D. L. Mills, R. F. Wallis, “Surface Polaritons—Electromagnetic Waves at Interfaces,” in Proceedings of the First Taormina Research Conference on the Structure of Matter, E. Burstein, F. de Martini, eds. (Pergamon1974), pp. 89–108.
  4. E. Kretschmann, “The Determination of the Optical Constants of Metals by Excitation of Surface Plasmons,” Z. Phys. 241, 313–324 (1971), in German.
    [CrossRef]
  5. R. Ullrich, “Theory of the Prism–Film Coupler by Plane-Wave Analysis,” J. Opt. Soc. Am. 60, 1337–1350 (1970).
    [CrossRef]
  6. H. J. M. Kreuwel, “Planar Waveguide Sensors for the Chemical Domain,” Ph.D. Thesis, U of Twente, Enschede, The Netherlands, pp. 52 and further (1988).
  7. R. Loudon, The Quantum Theory of Light (Clarendon, Oxford, 1981) pp. 64 and further.
  8. H. Akima, “A New Method of Interpolation and Smooth Curve Fitting based on Local Procedures,” Journal of the Assoc. Comput. Mach. 17, 589–602 (1970).
    [CrossRef]
  9. L. M. Delves, “The Numerical Evaluation of Principal Value Integrals,” Comput. J. 10, 389–391 (1967).
    [CrossRef]
  10. J. van Gent, E. J. R. Sudhblter, P. V. Lambeck, G. J. Gerritsma, Th.J.A. Popma, D. N. Reinhoudt, “A Chromogenic Crown Ether as a Sensing Molecule in Optical Sensors for the Detection of Hard Metal Ions,” J. Chem. Soc., Chem. Commun., 893–895 (1988).

1988 (1)

J. van Gent, E. J. R. Sudhblter, P. V. Lambeck, G. J. Gerritsma, Th.J.A. Popma, D. N. Reinhoudt, “A Chromogenic Crown Ether as a Sensing Molecule in Optical Sensors for the Detection of Hard Metal Ions,” J. Chem. Soc., Chem. Commun., 893–895 (1988).

1987 (1)

H. J. M. Kreuwel, P. V. Lambeck, J. van Gent, Th.J.A. Popma, “Surface Plasmon Dispersion and Luminescence Quenching applied to Planar Waveguide Sensors for the Measurement of Chemical Concentrations,” Proc. Soc. Photo-Opt. Instrum. Eng. 798, 218–224 (1987).

1982 (1)

C. Nylander, B. Liedberg, T. Lind, “Gas Detection by Means of Surface Plasmon Resonance,” Sensors and Actuators 3, 79–88 (1982).
[CrossRef]

1971 (1)

E. Kretschmann, “The Determination of the Optical Constants of Metals by Excitation of Surface Plasmons,” Z. Phys. 241, 313–324 (1971), in German.
[CrossRef]

1970 (2)

R. Ullrich, “Theory of the Prism–Film Coupler by Plane-Wave Analysis,” J. Opt. Soc. Am. 60, 1337–1350 (1970).
[CrossRef]

H. Akima, “A New Method of Interpolation and Smooth Curve Fitting based on Local Procedures,” Journal of the Assoc. Comput. Mach. 17, 589–602 (1970).
[CrossRef]

1967 (1)

L. M. Delves, “The Numerical Evaluation of Principal Value Integrals,” Comput. J. 10, 389–391 (1967).
[CrossRef]

Akima, H.

H. Akima, “A New Method of Interpolation and Smooth Curve Fitting based on Local Procedures,” Journal of the Assoc. Comput. Mach. 17, 589–602 (1970).
[CrossRef]

Burstein, E.

E. Burstein, A. Hartstein, J. Schoenwald, A. A. Maradudin, D. L. Mills, R. F. Wallis, “Surface Polaritons—Electromagnetic Waves at Interfaces,” in Proceedings of the First Taormina Research Conference on the Structure of Matter, E. Burstein, F. de Martini, eds. (Pergamon1974), pp. 89–108.

Delves, L. M.

L. M. Delves, “The Numerical Evaluation of Principal Value Integrals,” Comput. J. 10, 389–391 (1967).
[CrossRef]

Gerritsma, G. J.

J. van Gent, E. J. R. Sudhblter, P. V. Lambeck, G. J. Gerritsma, Th.J.A. Popma, D. N. Reinhoudt, “A Chromogenic Crown Ether as a Sensing Molecule in Optical Sensors for the Detection of Hard Metal Ions,” J. Chem. Soc., Chem. Commun., 893–895 (1988).

Hartstein, A.

E. Burstein, A. Hartstein, J. Schoenwald, A. A. Maradudin, D. L. Mills, R. F. Wallis, “Surface Polaritons—Electromagnetic Waves at Interfaces,” in Proceedings of the First Taormina Research Conference on the Structure of Matter, E. Burstein, F. de Martini, eds. (Pergamon1974), pp. 89–108.

Kretschmann, E.

E. Kretschmann, “The Determination of the Optical Constants of Metals by Excitation of Surface Plasmons,” Z. Phys. 241, 313–324 (1971), in German.
[CrossRef]

Kreuwel, H. J. M.

H. J. M. Kreuwel, P. V. Lambeck, J. van Gent, Th.J.A. Popma, “Surface Plasmon Dispersion and Luminescence Quenching applied to Planar Waveguide Sensors for the Measurement of Chemical Concentrations,” Proc. Soc. Photo-Opt. Instrum. Eng. 798, 218–224 (1987).

H. J. M. Kreuwel, “Planar Waveguide Sensors for the Chemical Domain,” Ph.D. Thesis, U of Twente, Enschede, The Netherlands, pp. 52 and further (1988).

Lambeck, P. V.

J. van Gent, E. J. R. Sudhblter, P. V. Lambeck, G. J. Gerritsma, Th.J.A. Popma, D. N. Reinhoudt, “A Chromogenic Crown Ether as a Sensing Molecule in Optical Sensors for the Detection of Hard Metal Ions,” J. Chem. Soc., Chem. Commun., 893–895 (1988).

H. J. M. Kreuwel, P. V. Lambeck, J. van Gent, Th.J.A. Popma, “Surface Plasmon Dispersion and Luminescence Quenching applied to Planar Waveguide Sensors for the Measurement of Chemical Concentrations,” Proc. Soc. Photo-Opt. Instrum. Eng. 798, 218–224 (1987).

Liedberg, B.

C. Nylander, B. Liedberg, T. Lind, “Gas Detection by Means of Surface Plasmon Resonance,” Sensors and Actuators 3, 79–88 (1982).
[CrossRef]

Lind, T.

C. Nylander, B. Liedberg, T. Lind, “Gas Detection by Means of Surface Plasmon Resonance,” Sensors and Actuators 3, 79–88 (1982).
[CrossRef]

Loudon, R.

R. Loudon, The Quantum Theory of Light (Clarendon, Oxford, 1981) pp. 64 and further.

Maradudin, A. A.

E. Burstein, A. Hartstein, J. Schoenwald, A. A. Maradudin, D. L. Mills, R. F. Wallis, “Surface Polaritons—Electromagnetic Waves at Interfaces,” in Proceedings of the First Taormina Research Conference on the Structure of Matter, E. Burstein, F. de Martini, eds. (Pergamon1974), pp. 89–108.

Mills, D. L.

E. Burstein, A. Hartstein, J. Schoenwald, A. A. Maradudin, D. L. Mills, R. F. Wallis, “Surface Polaritons—Electromagnetic Waves at Interfaces,” in Proceedings of the First Taormina Research Conference on the Structure of Matter, E. Burstein, F. de Martini, eds. (Pergamon1974), pp. 89–108.

Nylander, C.

C. Nylander, B. Liedberg, T. Lind, “Gas Detection by Means of Surface Plasmon Resonance,” Sensors and Actuators 3, 79–88 (1982).
[CrossRef]

Popma, Th.J.A.

J. van Gent, E. J. R. Sudhblter, P. V. Lambeck, G. J. Gerritsma, Th.J.A. Popma, D. N. Reinhoudt, “A Chromogenic Crown Ether as a Sensing Molecule in Optical Sensors for the Detection of Hard Metal Ions,” J. Chem. Soc., Chem. Commun., 893–895 (1988).

H. J. M. Kreuwel, P. V. Lambeck, J. van Gent, Th.J.A. Popma, “Surface Plasmon Dispersion and Luminescence Quenching applied to Planar Waveguide Sensors for the Measurement of Chemical Concentrations,” Proc. Soc. Photo-Opt. Instrum. Eng. 798, 218–224 (1987).

Reinhoudt, D. N.

J. van Gent, E. J. R. Sudhblter, P. V. Lambeck, G. J. Gerritsma, Th.J.A. Popma, D. N. Reinhoudt, “A Chromogenic Crown Ether as a Sensing Molecule in Optical Sensors for the Detection of Hard Metal Ions,” J. Chem. Soc., Chem. Commun., 893–895 (1988).

Schoenwald, J.

E. Burstein, A. Hartstein, J. Schoenwald, A. A. Maradudin, D. L. Mills, R. F. Wallis, “Surface Polaritons—Electromagnetic Waves at Interfaces,” in Proceedings of the First Taormina Research Conference on the Structure of Matter, E. Burstein, F. de Martini, eds. (Pergamon1974), pp. 89–108.

Sudhblter, E. J. R.

J. van Gent, E. J. R. Sudhblter, P. V. Lambeck, G. J. Gerritsma, Th.J.A. Popma, D. N. Reinhoudt, “A Chromogenic Crown Ether as a Sensing Molecule in Optical Sensors for the Detection of Hard Metal Ions,” J. Chem. Soc., Chem. Commun., 893–895 (1988).

Ullrich, R.

R. Ullrich, “Theory of the Prism–Film Coupler by Plane-Wave Analysis,” J. Opt. Soc. Am. 60, 1337–1350 (1970).
[CrossRef]

van Gent, J.

J. van Gent, E. J. R. Sudhblter, P. V. Lambeck, G. J. Gerritsma, Th.J.A. Popma, D. N. Reinhoudt, “A Chromogenic Crown Ether as a Sensing Molecule in Optical Sensors for the Detection of Hard Metal Ions,” J. Chem. Soc., Chem. Commun., 893–895 (1988).

H. J. M. Kreuwel, P. V. Lambeck, J. van Gent, Th.J.A. Popma, “Surface Plasmon Dispersion and Luminescence Quenching applied to Planar Waveguide Sensors for the Measurement of Chemical Concentrations,” Proc. Soc. Photo-Opt. Instrum. Eng. 798, 218–224 (1987).

Wallis, R. F.

E. Burstein, A. Hartstein, J. Schoenwald, A. A. Maradudin, D. L. Mills, R. F. Wallis, “Surface Polaritons—Electromagnetic Waves at Interfaces,” in Proceedings of the First Taormina Research Conference on the Structure of Matter, E. Burstein, F. de Martini, eds. (Pergamon1974), pp. 89–108.

Comput. J. (1)

L. M. Delves, “The Numerical Evaluation of Principal Value Integrals,” Comput. J. 10, 389–391 (1967).
[CrossRef]

J. Chem. Soc. (1)

J. van Gent, E. J. R. Sudhblter, P. V. Lambeck, G. J. Gerritsma, Th.J.A. Popma, D. N. Reinhoudt, “A Chromogenic Crown Ether as a Sensing Molecule in Optical Sensors for the Detection of Hard Metal Ions,” J. Chem. Soc., Chem. Commun., 893–895 (1988).

J. Opt. Soc. Am. (1)

R. Ullrich, “Theory of the Prism–Film Coupler by Plane-Wave Analysis,” J. Opt. Soc. Am. 60, 1337–1350 (1970).
[CrossRef]

Journal of the Assoc. Comput. Mach. (1)

H. Akima, “A New Method of Interpolation and Smooth Curve Fitting based on Local Procedures,” Journal of the Assoc. Comput. Mach. 17, 589–602 (1970).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

H. J. M. Kreuwel, P. V. Lambeck, J. van Gent, Th.J.A. Popma, “Surface Plasmon Dispersion and Luminescence Quenching applied to Planar Waveguide Sensors for the Measurement of Chemical Concentrations,” Proc. Soc. Photo-Opt. Instrum. Eng. 798, 218–224 (1987).

Sensors and Actuators (1)

C. Nylander, B. Liedberg, T. Lind, “Gas Detection by Means of Surface Plasmon Resonance,” Sensors and Actuators 3, 79–88 (1982).
[CrossRef]

Z. Phys. (1)

E. Kretschmann, “The Determination of the Optical Constants of Metals by Excitation of Surface Plasmons,” Z. Phys. 241, 313–324 (1971), in German.
[CrossRef]

Other (3)

E. Burstein, A. Hartstein, J. Schoenwald, A. A. Maradudin, D. L. Mills, R. F. Wallis, “Surface Polaritons—Electromagnetic Waves at Interfaces,” in Proceedings of the First Taormina Research Conference on the Structure of Matter, E. Burstein, F. de Martini, eds. (Pergamon1974), pp. 89–108.

H. J. M. Kreuwel, “Planar Waveguide Sensors for the Chemical Domain,” Ph.D. Thesis, U of Twente, Enschede, The Netherlands, pp. 52 and further (1988).

R. Loudon, The Quantum Theory of Light (Clarendon, Oxford, 1981) pp. 64 and further.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Electric field profile of a surface plasmon.

Fig. 2
Fig. 2

Experimental setup for the detection of surface plasmon resonance curves (Kretschmann configuration).

Fig. 3
Fig. 3

How to find the relative figure of merit S from the R(θ) reflectance curves.

Fig. 4
Fig. 4

Position of the dip, expressed in terms of Neff, as a function of the thickness of the silver film (tAg) for the systems prism–silver–air and prism–silver–water.

Fig. 5
Fig. 5

Depth of the dip as a function of the thickness of the silver layer for the system prism–silver–air.

Fig. 6
Fig. 6

Calculated (line) and measured (+) position of the surface plasmon dip in the system prism–silver–dielectric, where the dielectric is air, water or acetone.

Fig. 7
Fig. 7

Calculated and measured surface plasmon dispersion curves for the system prism–silver–air (slide glass substrates).

Fig. 8
Fig. 8

Calculated (line) and measured (+) positions of the surface plasmon dip of the system prism–silver–ZrO2–air.

Fig. 9
Fig. 9

Halfwidth of the surface plasmon dip as a function of tZrO2 in the system prism–silver–ZrO2–air.

Fig. 10
Fig. 10

Electric field distribution of a surface plasmon in the systems prism–silver–air (——) and prism–silver–ZrO2–air (——).

Fig. 11
Fig. 11

A. Absorption spectra of the acid (or neutral) and basic form of BCP. B. Imaginary part of the refractive index (n″) as a function of the wavelength for the acid and basic forms of BCP. C. Calculated real part of the refractive index (n′) as a function of the wavelength for the acid and basic forms of BCP.

Fig. 12
Fig. 12

Calculated (lines) and measured (symbols) positions of the surface plasmon dip as a function of the thickness of the ZrO2 layer for the system prism–silver (54 nm)–ZrO2 (variable)–BCP (4.6 nm)–air (+:without BCP, Δ:BCP in neutral environment, ▽:BCP in basic environment).

Fig. 13
Fig. 13

Calculated (lines) and measured (symbols) halfwidths of the surface plasmon dip as a function of the thickness of the ZrO2 layer for the system prism–silver (54 nm)–ZrO2 (variable)–BCP (4.6 nm)–air (+:without BCP, Δ:BCP in neutral environment, ▽:BCP in basic environment.

Fig. 14
Fig. 14

Change in halfwidth of the reflection dips of the BOP–sensor system resulting from the change from acid to basic environment.

Fig. 15
Fig. 15

Calculated (line) and measured (+) relative figure of merit S as a function of the intermediate ZrO2 layer.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E ( x , z , t ) = E 0 ( x ) exp i ( ω t - k ˜ z z ) ,
k ˜ z = ω c ˜ A g ˜ D ˜ A g + ˜ D ,
k z = n p k 0 sin ( θ ) = N eff k 0
k 0 = 2 π λ 0 ,
S = Δ k z k z .
S = Δ k z w 1 % ,
n ( λ ) = c 1 λ λ ( λ ) ,

Metrics