Abstract

The use of the rate of change of the relative phase shift of p- and s-polarized light with voltage to determine the electrooptic coefficient of a poled polymer film is discussed.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Williams, “Polymers in Nonlinear Optics,” ACS Adv. Chem. Ser. 218, 297–330 (1988).
  2. G. Khanarian et al., “Characterization of Polymeric Nonlinear Organic Materials,” Proc. Soc. Photo-Opt. Instrum. Eng. 824, 72–78 (1988).
  3. L. P. Mosteller, F. Wooten, “Optical Properties and Reflectance of Uniaxial Absorbing Crystals,” J. Opt. Soc. Am. 58, 511–518 (1968).
    [Crossref]
  4. M. J. Dignam, M. Moskovits, R. W. Stobie, “Specular Reflectance and Ellipsometric Spectroscopy of Oriented Molecular Layers,” Trans. Faraday Soc. 67, 3306–3317 (1971).
    [Crossref]
  5. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1964), p. 673.
  6. W. H. G. Horsthuis, G. J. M. Krijnen, “Simple Measuring Method for Electro-Optic Coefficients in Poled Polymer Waveguides,” Appl. Phys. Lett. 55, 616–618 (1989).
    [Crossref]

1989 (1)

W. H. G. Horsthuis, G. J. M. Krijnen, “Simple Measuring Method for Electro-Optic Coefficients in Poled Polymer Waveguides,” Appl. Phys. Lett. 55, 616–618 (1989).
[Crossref]

1988 (2)

D. Williams, “Polymers in Nonlinear Optics,” ACS Adv. Chem. Ser. 218, 297–330 (1988).

G. Khanarian et al., “Characterization of Polymeric Nonlinear Organic Materials,” Proc. Soc. Photo-Opt. Instrum. Eng. 824, 72–78 (1988).

1971 (1)

M. J. Dignam, M. Moskovits, R. W. Stobie, “Specular Reflectance and Ellipsometric Spectroscopy of Oriented Molecular Layers,” Trans. Faraday Soc. 67, 3306–3317 (1971).
[Crossref]

1968 (1)

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1964), p. 673.

Dignam, M. J.

M. J. Dignam, M. Moskovits, R. W. Stobie, “Specular Reflectance and Ellipsometric Spectroscopy of Oriented Molecular Layers,” Trans. Faraday Soc. 67, 3306–3317 (1971).
[Crossref]

Horsthuis, W. H. G.

W. H. G. Horsthuis, G. J. M. Krijnen, “Simple Measuring Method for Electro-Optic Coefficients in Poled Polymer Waveguides,” Appl. Phys. Lett. 55, 616–618 (1989).
[Crossref]

Khanarian, G.

G. Khanarian et al., “Characterization of Polymeric Nonlinear Organic Materials,” Proc. Soc. Photo-Opt. Instrum. Eng. 824, 72–78 (1988).

Krijnen, G. J. M.

W. H. G. Horsthuis, G. J. M. Krijnen, “Simple Measuring Method for Electro-Optic Coefficients in Poled Polymer Waveguides,” Appl. Phys. Lett. 55, 616–618 (1989).
[Crossref]

Moskovits, M.

M. J. Dignam, M. Moskovits, R. W. Stobie, “Specular Reflectance and Ellipsometric Spectroscopy of Oriented Molecular Layers,” Trans. Faraday Soc. 67, 3306–3317 (1971).
[Crossref]

Mosteller, L. P.

Stobie, R. W.

M. J. Dignam, M. Moskovits, R. W. Stobie, “Specular Reflectance and Ellipsometric Spectroscopy of Oriented Molecular Layers,” Trans. Faraday Soc. 67, 3306–3317 (1971).
[Crossref]

Williams, D.

D. Williams, “Polymers in Nonlinear Optics,” ACS Adv. Chem. Ser. 218, 297–330 (1988).

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1964), p. 673.

Wooten, F.

ACS Adv. Chem. Ser. (1)

D. Williams, “Polymers in Nonlinear Optics,” ACS Adv. Chem. Ser. 218, 297–330 (1988).

Appl. Phys. Lett. (1)

W. H. G. Horsthuis, G. J. M. Krijnen, “Simple Measuring Method for Electro-Optic Coefficients in Poled Polymer Waveguides,” Appl. Phys. Lett. 55, 616–618 (1989).
[Crossref]

J. Opt. Soc. Am. (1)

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

G. Khanarian et al., “Characterization of Polymeric Nonlinear Organic Materials,” Proc. Soc. Photo-Opt. Instrum. Eng. 824, 72–78 (1988).

Trans. Faraday Soc. (1)

M. J. Dignam, M. Moskovits, R. W. Stobie, “Specular Reflectance and Ellipsometric Spectroscopy of Oriented Molecular Layers,” Trans. Faraday Soc. 67, 3306–3317 (1971).
[Crossref]

Other (1)

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1964), p. 673.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Percent deviation of r33 calculated using Eq. (10), which assumes an isotropic film from r33 calculated using Eq. (8), which includes the affect of poling birefringence as a function of δ (see text).

Fig. 2
Fig. 2

Poled polymer film on ITO covered glass with a top gold electrode. The electrooptic coefficient of the polymer film is determined from the voltage-induced relative phase shift of p- and s-polarized light reflected from the metal electrode.

Fig. 3
Fig. 3

Comparison of Ω (see text) vs the angle of incidence determined numerically (solid line) and from Eq. (10) (dashed line). The parameters used in the calculation are: λ = 632.8 nm; nglass = 1.52; nITO = 2.0; dITO = 200 nm; npolymer = 1.55, dpolymer = 1.5 μm; nAu = 0.18 + 3.439i.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

χ ν = m d k z ν ,
k z s = k n t ( 1 - 1 n t 2 sin 2 θ ) 1 / 2 k n t cos ϕ s ,
k z p = k n t ( 1 - 1 n n 2 sin 2 θ ) 1 / 2 k n t cos ϕ p ,
E p / E 0 p E s / E 0 s = exp [ i ( Δ - Δ 0 ) ] exp ( i δ Δ ) ,
δ Δ = m k d δ ( n t cos ϕ p - n t cos ϕ s ) .
δ ( n t cos ϕ p ) = cos ϕ p δ n t + n t n n tan ϕ p sin ϕ p δ n n .
δ ( n t cos ϕ s ) = cos ϕ s δ n t + tan ϕ s sin ϕ s δ n 1 .
δ Δ = m 2 π λ d [ ( cos ϕ p - cos ϕ s ) δ n t + ( n t n n tan ϕ p sin ϕ p δ n n - tan ϕ s sin ϕ s δ n t ) ] .
δ n t = 1 2 n t 3 r 13 δ V d ,
δ n n = 1 2 n n 3 r 33 δ V d ,
δ Δ δ V = 1 3 m k n 3 tan ϕ sin ϕ r 33 .
n t = n - δ ,
n n = n + 2 δ ,
Ω = 1 k r 33 δ Δ δ V .

Metrics