Abstract

The dispersion characteristics and radiation loss characteristics of ARROW (antiresonant reflecting optical waveguide), a novel single-mode slab waveguide, are analyzed in detail. The mechanism by which the waveguide produces a large amount of light radiation from the waveguide core to the semiconductor substrate is explained and some approximate formulas of propagation characteristics are obtained, which are useful for the design of ARROW. Two novel integrated structures of ARROW and photodetector are proposed to realize high coupling efficiency from waveguide to photodetector, small device size, and easy fabrication process. In these structures, an antireflecting (AR) layer is introduced to greatly enhance coupling efficiency. Their performance is discussed compared with the conventional waveguide structure. It is shown theoretically and experimentally that a high coupling efficiency (>90%) is achievable with short detector length in the ARROW structures.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. T. Boyd, C. M. Chuang, C. L. Chen, “Fabrication of Optical Waveguide Taper Couplers Utilizing SiO2,” Appl. Opt. 18, 506–509 (1979).
    [Crossref] [PubMed]
  2. S. Ura, T. Suhara, H. Nishihara, J. Koyama, “An Integrated-Optic Disk Pickup Device,” IEEE/OSA J. Lightwave Technol. LT-4, 913–917 (1986).
    [Crossref]
  3. T. Suhara, H. Nishihara, “Integrated Optics Components and Devices Using Periodic Structures,” IEEE J. Quantum Electron. QE-22, 845 (1986).
    [Crossref]
  4. P. Cinguino, C. Cacciatore, C. De Bernardi, F. Genova, M. Puleo, C. Rigo, A. Stano, “InGaAs PIN Photodiode Monolithically Integrated on InGaAlAs Ridge Waveguides,” in Proceedings, Thirteenth European Conference on Optical Communication (Finland, 1987), p. 247.
  5. T. L. Koch, P. J. Corvini, W. T. Tsang, U. Koren, B. I. Miller, “Wavelength Selective Interlayer Directionally Grating-Coupled InP/InGaAsP Waveguide Photodetection,” Appl. Phys. Lett. 51, 1060 (1987).
    [Crossref]
  6. M. Erman, P. Jarry, R. Gamonal, J. L. Gentner, P. Stephan, C. Guedon, “Monolithic Integration of a GaInAs p-i-n Photodiode and an Optical Waveguide: Modeling and Realization Using Chloride Vapor Phase Epitaxy,” IEEE/OSA J. Lightwave Technol. LT-6, 399–411 (1988).
    [Crossref]
  7. Y. Kokubun, T. Baba, H. Watanabe, K. Iga, “Monolithic Integration of ARROW-type Demultiplexer and Photodetector,” in Proceedings, Fourteenth European Conference on Optics Communication (Brighton, 1988), p. 231; T. Baba, Y. Kokubun, H. Watanabe, “Monolithic Integration of ARROW-type Demultiplexer and Photodetector in Shorter Wavelength Region,” IEEE/OSA J. Lightwave Technol. LT-8, 99–104 (1990).
    [Crossref]
  8. M. McWright Howerton, T. E. Batchman, “A Thin-Film Waveguide Photodetector Using Hydrogenated Amorphous Silicon,” IEEE/OSA J. Lightwave Technol. LT-6, 1854–1860 (1988).
    [Crossref]
  9. M. A. Duguay, Y. Kokubun, T. L. Koch, L. Pfeiffer, “Antiresonant Reflecting Optical Waveguides in SiO2-Si Multilayer Structure,” Appl. Phys. Lett. 49, 13 (1986).
    [Crossref]
  10. Y. Kokubun, T. Baba, T. Sakaki, K. Iga, “Low Loss Antiresonant Reflecting Optical Waveguide on a Si Substrate in Visible Wavelength Region,” Electron. Lett. 22, 892 (1986).
    [Crossref]
  11. T. Baba, Y. Kokubun, T. Sakaki, K. Iga, “Loss Reduction of an ARROW Waveguide in Shorter Wavelength and Its Stack Configuration,” IEEE/OSA J. Lightwave Technol. LT-6, 1440–1445 (1988).
    [Crossref]
  12. Z. Knittl, “Optics of Thin Films,” (Wiley, New York, 1976).
  13. Y. Suematsu, K. Furuya, “Quasi-Guided Modes and Radiation Losses in Optical Dielectric Waveguides with External Higher Index Surroundings,” IEEE Trans. Microwave Theory Technol. MTT-23, 170 (1975).
    [Crossref]
  14. A. K. Ghatak, K. Thyagarajan, M. R. Shenoy, “Numerical Analysis of Planar Optical Waveguides Using Matrix Approach,” IEEE/OSA J. Lightwave Technol. LT-5, 660–667 (1987).
    [Crossref]

1988 (3)

M. Erman, P. Jarry, R. Gamonal, J. L. Gentner, P. Stephan, C. Guedon, “Monolithic Integration of a GaInAs p-i-n Photodiode and an Optical Waveguide: Modeling and Realization Using Chloride Vapor Phase Epitaxy,” IEEE/OSA J. Lightwave Technol. LT-6, 399–411 (1988).
[Crossref]

M. McWright Howerton, T. E. Batchman, “A Thin-Film Waveguide Photodetector Using Hydrogenated Amorphous Silicon,” IEEE/OSA J. Lightwave Technol. LT-6, 1854–1860 (1988).
[Crossref]

T. Baba, Y. Kokubun, T. Sakaki, K. Iga, “Loss Reduction of an ARROW Waveguide in Shorter Wavelength and Its Stack Configuration,” IEEE/OSA J. Lightwave Technol. LT-6, 1440–1445 (1988).
[Crossref]

1987 (2)

A. K. Ghatak, K. Thyagarajan, M. R. Shenoy, “Numerical Analysis of Planar Optical Waveguides Using Matrix Approach,” IEEE/OSA J. Lightwave Technol. LT-5, 660–667 (1987).
[Crossref]

T. L. Koch, P. J. Corvini, W. T. Tsang, U. Koren, B. I. Miller, “Wavelength Selective Interlayer Directionally Grating-Coupled InP/InGaAsP Waveguide Photodetection,” Appl. Phys. Lett. 51, 1060 (1987).
[Crossref]

1986 (4)

S. Ura, T. Suhara, H. Nishihara, J. Koyama, “An Integrated-Optic Disk Pickup Device,” IEEE/OSA J. Lightwave Technol. LT-4, 913–917 (1986).
[Crossref]

T. Suhara, H. Nishihara, “Integrated Optics Components and Devices Using Periodic Structures,” IEEE J. Quantum Electron. QE-22, 845 (1986).
[Crossref]

M. A. Duguay, Y. Kokubun, T. L. Koch, L. Pfeiffer, “Antiresonant Reflecting Optical Waveguides in SiO2-Si Multilayer Structure,” Appl. Phys. Lett. 49, 13 (1986).
[Crossref]

Y. Kokubun, T. Baba, T. Sakaki, K. Iga, “Low Loss Antiresonant Reflecting Optical Waveguide on a Si Substrate in Visible Wavelength Region,” Electron. Lett. 22, 892 (1986).
[Crossref]

1979 (1)

1975 (1)

Y. Suematsu, K. Furuya, “Quasi-Guided Modes and Radiation Losses in Optical Dielectric Waveguides with External Higher Index Surroundings,” IEEE Trans. Microwave Theory Technol. MTT-23, 170 (1975).
[Crossref]

Baba, T.

T. Baba, Y. Kokubun, T. Sakaki, K. Iga, “Loss Reduction of an ARROW Waveguide in Shorter Wavelength and Its Stack Configuration,” IEEE/OSA J. Lightwave Technol. LT-6, 1440–1445 (1988).
[Crossref]

Y. Kokubun, T. Baba, T. Sakaki, K. Iga, “Low Loss Antiresonant Reflecting Optical Waveguide on a Si Substrate in Visible Wavelength Region,” Electron. Lett. 22, 892 (1986).
[Crossref]

Y. Kokubun, T. Baba, H. Watanabe, K. Iga, “Monolithic Integration of ARROW-type Demultiplexer and Photodetector,” in Proceedings, Fourteenth European Conference on Optics Communication (Brighton, 1988), p. 231; T. Baba, Y. Kokubun, H. Watanabe, “Monolithic Integration of ARROW-type Demultiplexer and Photodetector in Shorter Wavelength Region,” IEEE/OSA J. Lightwave Technol. LT-8, 99–104 (1990).
[Crossref]

Batchman, T. E.

M. McWright Howerton, T. E. Batchman, “A Thin-Film Waveguide Photodetector Using Hydrogenated Amorphous Silicon,” IEEE/OSA J. Lightwave Technol. LT-6, 1854–1860 (1988).
[Crossref]

Boyd, J. T.

Cacciatore, C.

P. Cinguino, C. Cacciatore, C. De Bernardi, F. Genova, M. Puleo, C. Rigo, A. Stano, “InGaAs PIN Photodiode Monolithically Integrated on InGaAlAs Ridge Waveguides,” in Proceedings, Thirteenth European Conference on Optical Communication (Finland, 1987), p. 247.

Chen, C. L.

Chuang, C. M.

Cinguino, P.

P. Cinguino, C. Cacciatore, C. De Bernardi, F. Genova, M. Puleo, C. Rigo, A. Stano, “InGaAs PIN Photodiode Monolithically Integrated on InGaAlAs Ridge Waveguides,” in Proceedings, Thirteenth European Conference on Optical Communication (Finland, 1987), p. 247.

Corvini, P. J.

T. L. Koch, P. J. Corvini, W. T. Tsang, U. Koren, B. I. Miller, “Wavelength Selective Interlayer Directionally Grating-Coupled InP/InGaAsP Waveguide Photodetection,” Appl. Phys. Lett. 51, 1060 (1987).
[Crossref]

De Bernardi, C.

P. Cinguino, C. Cacciatore, C. De Bernardi, F. Genova, M. Puleo, C. Rigo, A. Stano, “InGaAs PIN Photodiode Monolithically Integrated on InGaAlAs Ridge Waveguides,” in Proceedings, Thirteenth European Conference on Optical Communication (Finland, 1987), p. 247.

Duguay, M. A.

M. A. Duguay, Y. Kokubun, T. L. Koch, L. Pfeiffer, “Antiresonant Reflecting Optical Waveguides in SiO2-Si Multilayer Structure,” Appl. Phys. Lett. 49, 13 (1986).
[Crossref]

Erman, M.

M. Erman, P. Jarry, R. Gamonal, J. L. Gentner, P. Stephan, C. Guedon, “Monolithic Integration of a GaInAs p-i-n Photodiode and an Optical Waveguide: Modeling and Realization Using Chloride Vapor Phase Epitaxy,” IEEE/OSA J. Lightwave Technol. LT-6, 399–411 (1988).
[Crossref]

Furuya, K.

Y. Suematsu, K. Furuya, “Quasi-Guided Modes and Radiation Losses in Optical Dielectric Waveguides with External Higher Index Surroundings,” IEEE Trans. Microwave Theory Technol. MTT-23, 170 (1975).
[Crossref]

Gamonal, R.

M. Erman, P. Jarry, R. Gamonal, J. L. Gentner, P. Stephan, C. Guedon, “Monolithic Integration of a GaInAs p-i-n Photodiode and an Optical Waveguide: Modeling and Realization Using Chloride Vapor Phase Epitaxy,” IEEE/OSA J. Lightwave Technol. LT-6, 399–411 (1988).
[Crossref]

Genova, F.

P. Cinguino, C. Cacciatore, C. De Bernardi, F. Genova, M. Puleo, C. Rigo, A. Stano, “InGaAs PIN Photodiode Monolithically Integrated on InGaAlAs Ridge Waveguides,” in Proceedings, Thirteenth European Conference on Optical Communication (Finland, 1987), p. 247.

Gentner, J. L.

M. Erman, P. Jarry, R. Gamonal, J. L. Gentner, P. Stephan, C. Guedon, “Monolithic Integration of a GaInAs p-i-n Photodiode and an Optical Waveguide: Modeling and Realization Using Chloride Vapor Phase Epitaxy,” IEEE/OSA J. Lightwave Technol. LT-6, 399–411 (1988).
[Crossref]

Ghatak, A. K.

A. K. Ghatak, K. Thyagarajan, M. R. Shenoy, “Numerical Analysis of Planar Optical Waveguides Using Matrix Approach,” IEEE/OSA J. Lightwave Technol. LT-5, 660–667 (1987).
[Crossref]

Guedon, C.

M. Erman, P. Jarry, R. Gamonal, J. L. Gentner, P. Stephan, C. Guedon, “Monolithic Integration of a GaInAs p-i-n Photodiode and an Optical Waveguide: Modeling and Realization Using Chloride Vapor Phase Epitaxy,” IEEE/OSA J. Lightwave Technol. LT-6, 399–411 (1988).
[Crossref]

Iga, K.

T. Baba, Y. Kokubun, T. Sakaki, K. Iga, “Loss Reduction of an ARROW Waveguide in Shorter Wavelength and Its Stack Configuration,” IEEE/OSA J. Lightwave Technol. LT-6, 1440–1445 (1988).
[Crossref]

Y. Kokubun, T. Baba, T. Sakaki, K. Iga, “Low Loss Antiresonant Reflecting Optical Waveguide on a Si Substrate in Visible Wavelength Region,” Electron. Lett. 22, 892 (1986).
[Crossref]

Y. Kokubun, T. Baba, H. Watanabe, K. Iga, “Monolithic Integration of ARROW-type Demultiplexer and Photodetector,” in Proceedings, Fourteenth European Conference on Optics Communication (Brighton, 1988), p. 231; T. Baba, Y. Kokubun, H. Watanabe, “Monolithic Integration of ARROW-type Demultiplexer and Photodetector in Shorter Wavelength Region,” IEEE/OSA J. Lightwave Technol. LT-8, 99–104 (1990).
[Crossref]

Jarry, P.

M. Erman, P. Jarry, R. Gamonal, J. L. Gentner, P. Stephan, C. Guedon, “Monolithic Integration of a GaInAs p-i-n Photodiode and an Optical Waveguide: Modeling and Realization Using Chloride Vapor Phase Epitaxy,” IEEE/OSA J. Lightwave Technol. LT-6, 399–411 (1988).
[Crossref]

Knittl, Z.

Z. Knittl, “Optics of Thin Films,” (Wiley, New York, 1976).

Koch, T. L.

T. L. Koch, P. J. Corvini, W. T. Tsang, U. Koren, B. I. Miller, “Wavelength Selective Interlayer Directionally Grating-Coupled InP/InGaAsP Waveguide Photodetection,” Appl. Phys. Lett. 51, 1060 (1987).
[Crossref]

M. A. Duguay, Y. Kokubun, T. L. Koch, L. Pfeiffer, “Antiresonant Reflecting Optical Waveguides in SiO2-Si Multilayer Structure,” Appl. Phys. Lett. 49, 13 (1986).
[Crossref]

Kokubun, Y.

T. Baba, Y. Kokubun, T. Sakaki, K. Iga, “Loss Reduction of an ARROW Waveguide in Shorter Wavelength and Its Stack Configuration,” IEEE/OSA J. Lightwave Technol. LT-6, 1440–1445 (1988).
[Crossref]

Y. Kokubun, T. Baba, T. Sakaki, K. Iga, “Low Loss Antiresonant Reflecting Optical Waveguide on a Si Substrate in Visible Wavelength Region,” Electron. Lett. 22, 892 (1986).
[Crossref]

M. A. Duguay, Y. Kokubun, T. L. Koch, L. Pfeiffer, “Antiresonant Reflecting Optical Waveguides in SiO2-Si Multilayer Structure,” Appl. Phys. Lett. 49, 13 (1986).
[Crossref]

Y. Kokubun, T. Baba, H. Watanabe, K. Iga, “Monolithic Integration of ARROW-type Demultiplexer and Photodetector,” in Proceedings, Fourteenth European Conference on Optics Communication (Brighton, 1988), p. 231; T. Baba, Y. Kokubun, H. Watanabe, “Monolithic Integration of ARROW-type Demultiplexer and Photodetector in Shorter Wavelength Region,” IEEE/OSA J. Lightwave Technol. LT-8, 99–104 (1990).
[Crossref]

Koren, U.

T. L. Koch, P. J. Corvini, W. T. Tsang, U. Koren, B. I. Miller, “Wavelength Selective Interlayer Directionally Grating-Coupled InP/InGaAsP Waveguide Photodetection,” Appl. Phys. Lett. 51, 1060 (1987).
[Crossref]

Koyama, J.

S. Ura, T. Suhara, H. Nishihara, J. Koyama, “An Integrated-Optic Disk Pickup Device,” IEEE/OSA J. Lightwave Technol. LT-4, 913–917 (1986).
[Crossref]

McWright Howerton, M.

M. McWright Howerton, T. E. Batchman, “A Thin-Film Waveguide Photodetector Using Hydrogenated Amorphous Silicon,” IEEE/OSA J. Lightwave Technol. LT-6, 1854–1860 (1988).
[Crossref]

Miller, B. I.

T. L. Koch, P. J. Corvini, W. T. Tsang, U. Koren, B. I. Miller, “Wavelength Selective Interlayer Directionally Grating-Coupled InP/InGaAsP Waveguide Photodetection,” Appl. Phys. Lett. 51, 1060 (1987).
[Crossref]

Nishihara, H.

S. Ura, T. Suhara, H. Nishihara, J. Koyama, “An Integrated-Optic Disk Pickup Device,” IEEE/OSA J. Lightwave Technol. LT-4, 913–917 (1986).
[Crossref]

T. Suhara, H. Nishihara, “Integrated Optics Components and Devices Using Periodic Structures,” IEEE J. Quantum Electron. QE-22, 845 (1986).
[Crossref]

Pfeiffer, L.

M. A. Duguay, Y. Kokubun, T. L. Koch, L. Pfeiffer, “Antiresonant Reflecting Optical Waveguides in SiO2-Si Multilayer Structure,” Appl. Phys. Lett. 49, 13 (1986).
[Crossref]

Puleo, M.

P. Cinguino, C. Cacciatore, C. De Bernardi, F. Genova, M. Puleo, C. Rigo, A. Stano, “InGaAs PIN Photodiode Monolithically Integrated on InGaAlAs Ridge Waveguides,” in Proceedings, Thirteenth European Conference on Optical Communication (Finland, 1987), p. 247.

Rigo, C.

P. Cinguino, C. Cacciatore, C. De Bernardi, F. Genova, M. Puleo, C. Rigo, A. Stano, “InGaAs PIN Photodiode Monolithically Integrated on InGaAlAs Ridge Waveguides,” in Proceedings, Thirteenth European Conference on Optical Communication (Finland, 1987), p. 247.

Sakaki, T.

T. Baba, Y. Kokubun, T. Sakaki, K. Iga, “Loss Reduction of an ARROW Waveguide in Shorter Wavelength and Its Stack Configuration,” IEEE/OSA J. Lightwave Technol. LT-6, 1440–1445 (1988).
[Crossref]

Y. Kokubun, T. Baba, T. Sakaki, K. Iga, “Low Loss Antiresonant Reflecting Optical Waveguide on a Si Substrate in Visible Wavelength Region,” Electron. Lett. 22, 892 (1986).
[Crossref]

Shenoy, M. R.

A. K. Ghatak, K. Thyagarajan, M. R. Shenoy, “Numerical Analysis of Planar Optical Waveguides Using Matrix Approach,” IEEE/OSA J. Lightwave Technol. LT-5, 660–667 (1987).
[Crossref]

Stano, A.

P. Cinguino, C. Cacciatore, C. De Bernardi, F. Genova, M. Puleo, C. Rigo, A. Stano, “InGaAs PIN Photodiode Monolithically Integrated on InGaAlAs Ridge Waveguides,” in Proceedings, Thirteenth European Conference on Optical Communication (Finland, 1987), p. 247.

Stephan, P.

M. Erman, P. Jarry, R. Gamonal, J. L. Gentner, P. Stephan, C. Guedon, “Monolithic Integration of a GaInAs p-i-n Photodiode and an Optical Waveguide: Modeling and Realization Using Chloride Vapor Phase Epitaxy,” IEEE/OSA J. Lightwave Technol. LT-6, 399–411 (1988).
[Crossref]

Suematsu, Y.

Y. Suematsu, K. Furuya, “Quasi-Guided Modes and Radiation Losses in Optical Dielectric Waveguides with External Higher Index Surroundings,” IEEE Trans. Microwave Theory Technol. MTT-23, 170 (1975).
[Crossref]

Suhara, T.

T. Suhara, H. Nishihara, “Integrated Optics Components and Devices Using Periodic Structures,” IEEE J. Quantum Electron. QE-22, 845 (1986).
[Crossref]

S. Ura, T. Suhara, H. Nishihara, J. Koyama, “An Integrated-Optic Disk Pickup Device,” IEEE/OSA J. Lightwave Technol. LT-4, 913–917 (1986).
[Crossref]

Thyagarajan, K.

A. K. Ghatak, K. Thyagarajan, M. R. Shenoy, “Numerical Analysis of Planar Optical Waveguides Using Matrix Approach,” IEEE/OSA J. Lightwave Technol. LT-5, 660–667 (1987).
[Crossref]

Tsang, W. T.

T. L. Koch, P. J. Corvini, W. T. Tsang, U. Koren, B. I. Miller, “Wavelength Selective Interlayer Directionally Grating-Coupled InP/InGaAsP Waveguide Photodetection,” Appl. Phys. Lett. 51, 1060 (1987).
[Crossref]

Ura, S.

S. Ura, T. Suhara, H. Nishihara, J. Koyama, “An Integrated-Optic Disk Pickup Device,” IEEE/OSA J. Lightwave Technol. LT-4, 913–917 (1986).
[Crossref]

Watanabe, H.

Y. Kokubun, T. Baba, H. Watanabe, K. Iga, “Monolithic Integration of ARROW-type Demultiplexer and Photodetector,” in Proceedings, Fourteenth European Conference on Optics Communication (Brighton, 1988), p. 231; T. Baba, Y. Kokubun, H. Watanabe, “Monolithic Integration of ARROW-type Demultiplexer and Photodetector in Shorter Wavelength Region,” IEEE/OSA J. Lightwave Technol. LT-8, 99–104 (1990).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

M. A. Duguay, Y. Kokubun, T. L. Koch, L. Pfeiffer, “Antiresonant Reflecting Optical Waveguides in SiO2-Si Multilayer Structure,” Appl. Phys. Lett. 49, 13 (1986).
[Crossref]

T. L. Koch, P. J. Corvini, W. T. Tsang, U. Koren, B. I. Miller, “Wavelength Selective Interlayer Directionally Grating-Coupled InP/InGaAsP Waveguide Photodetection,” Appl. Phys. Lett. 51, 1060 (1987).
[Crossref]

Electron. Lett. (1)

Y. Kokubun, T. Baba, T. Sakaki, K. Iga, “Low Loss Antiresonant Reflecting Optical Waveguide on a Si Substrate in Visible Wavelength Region,” Electron. Lett. 22, 892 (1986).
[Crossref]

IEEE J. Quantum Electron. (1)

T. Suhara, H. Nishihara, “Integrated Optics Components and Devices Using Periodic Structures,” IEEE J. Quantum Electron. QE-22, 845 (1986).
[Crossref]

IEEE Trans. Microwave Theory Technol. (1)

Y. Suematsu, K. Furuya, “Quasi-Guided Modes and Radiation Losses in Optical Dielectric Waveguides with External Higher Index Surroundings,” IEEE Trans. Microwave Theory Technol. MTT-23, 170 (1975).
[Crossref]

IEEE/OSA J. Lightwave Technol. (5)

A. K. Ghatak, K. Thyagarajan, M. R. Shenoy, “Numerical Analysis of Planar Optical Waveguides Using Matrix Approach,” IEEE/OSA J. Lightwave Technol. LT-5, 660–667 (1987).
[Crossref]

M. Erman, P. Jarry, R. Gamonal, J. L. Gentner, P. Stephan, C. Guedon, “Monolithic Integration of a GaInAs p-i-n Photodiode and an Optical Waveguide: Modeling and Realization Using Chloride Vapor Phase Epitaxy,” IEEE/OSA J. Lightwave Technol. LT-6, 399–411 (1988).
[Crossref]

M. McWright Howerton, T. E. Batchman, “A Thin-Film Waveguide Photodetector Using Hydrogenated Amorphous Silicon,” IEEE/OSA J. Lightwave Technol. LT-6, 1854–1860 (1988).
[Crossref]

S. Ura, T. Suhara, H. Nishihara, J. Koyama, “An Integrated-Optic Disk Pickup Device,” IEEE/OSA J. Lightwave Technol. LT-4, 913–917 (1986).
[Crossref]

T. Baba, Y. Kokubun, T. Sakaki, K. Iga, “Loss Reduction of an ARROW Waveguide in Shorter Wavelength and Its Stack Configuration,” IEEE/OSA J. Lightwave Technol. LT-6, 1440–1445 (1988).
[Crossref]

Other (3)

Z. Knittl, “Optics of Thin Films,” (Wiley, New York, 1976).

P. Cinguino, C. Cacciatore, C. De Bernardi, F. Genova, M. Puleo, C. Rigo, A. Stano, “InGaAs PIN Photodiode Monolithically Integrated on InGaAlAs Ridge Waveguides,” in Proceedings, Thirteenth European Conference on Optical Communication (Finland, 1987), p. 247.

Y. Kokubun, T. Baba, H. Watanabe, K. Iga, “Monolithic Integration of ARROW-type Demultiplexer and Photodetector,” in Proceedings, Fourteenth European Conference on Optics Communication (Brighton, 1988), p. 231; T. Baba, Y. Kokubun, H. Watanabe, “Monolithic Integration of ARROW-type Demultiplexer and Photodetector in Shorter Wavelength Region,” IEEE/OSA J. Lightwave Technol. LT-8, 99–104 (1990).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Conventional integrated structure of waveguide and photodetector: (a) tapered cladding type; (b) grating type.

Fig. 2
Fig. 2

Fundamental structure of ARROW.

Fig. 3
Fig. 3

Propagation characteristics of ARROW vs thickness of first cladding layer normalized by wavelength: (a) equivalent refractive index characteristic. The values of d c /λ = 6.3 and d2/λ = 3.15 correspond to thicknesses d c = 4 μm and d2 = 2 μm at λ = 0.633 μm, respectively; (b) propagation loss characteristic.

Fig. 4
Fig. 4

Calculated field distribution of first cladding mode and the lowest order ARROW mode: (a) in first-order antiresonant conditions; (b) in second-order antiresonant conditions.

Fig. 5
Fig. 5

Integrated structures of waveguide and photodetector: (a) conventional waveguide structure in which an antireflecting (AR) layer is arranged on the photodetector to enhance coupling efficiency; (b) punch-through ARROW structure with AR layer (the first cladding layer above the photodetector is simply removed); and (c) resonant ARROW structure with AR layer (thickness of first cladding layer is adjusted to resonant conditions).

Fig. 6
Fig. 6

Calculated maximum radiation loss of integrated structures without AR layer vs thickness of core at λ = 0.633 μm.

Fig. 7
Fig. 7

Wave analysis model of ARROW. Same model can be adapted to conventional waveguide structure by putting d1 = 0 and d2 = 0.

Fig. 8
Fig. 8

Calculated radiation loss vs propagation distance. Ideal AR layer is assumed for each structure. Length of tapered cladding in conventional waveguide structure is not included in the distance. (a) Conventional waveguide structure for various thickness of core d c . Results without AR layer for d c /λ = 6 added in contrast with that with AR layer. (b) Comparison among ARROW structures and conventional waveguide.

Fig. 9
Fig. 9

Simulated light power transition in ARROW integrated structure [c].

Fig. 10
Fig. 10

Measured radiation loss.

Fig. 11
Fig. 11

Near field pattern of ARROW: (a) waveguide region (d1 = 0.09 μm); and (b) coupling portion (d1 = 0.18 μm).

Fig. 12
Fig. 12

SEM view of coupling portion of fabricated ARROW integrated device. Light is confined in the lateral direction by ribwaveguide.

Fig. 13
Fig. 13

Output signal of chopped light from fabricated ARROW integrated device.

Fig. 14
Fig. 14

Calculated excitation factor L(β) against input field of profile of low loss ARROW.

Fig. 15
Fig. 15

Calculated normalized factor N(β) against various thicknesses of first cladding layer. Mode numbers agree with Fig. 3. d1/λ = 0.284 corresponds to the point Ⓑ in Fig. 3.

Equations (36)

Equations on this page are rendered with MathJax. Learn more.

2 k 0 n c d c sin θ + ϕ 1 + ϕ 2 = 2 π ν ,
β ν = k 0 n c cos θ ,
α ν = 2.17 ( 1 - R ) tan θ / d ce ( dB / m ) ,
n eq β ν / k 0 .
First cladding modes : n c < n eq < n 1 ARROW modes : n 0 < n eq < n c Radiation modes : 0 < n eq < n 0 } ,
d 1 λ 1 4 n 1 [ 1 - ( n c n 1 ) 2 + ( λ 2 n 1 d ce ) 2 ] - 1 / 2 ( 2 N + 1 ) ,
d ce d c + λ 2 π n c 2 - n 0 2 .
d 1 λ 1 2 n 1 [ M + 3 λ 2 π 2 d ce n 1 2 - n c 2 ] [ 1 - ( n c n 1 ) 2 ] - 1 / 2 ,             ( M = 0 , 1 , 2 , ) .
α 0 min λ 0.543 ( λ d ce ) 5 / { n c ( n 1 2 - n c 2 ) n s 2 - n c 2 } ( dB · λ / m ) ,
α 0 max λ 0.879 ( λ d ce ) 3 / ( n c n s 2 - n c 2 ) ( dB · λ / m ) .
α 0 ( d 1 = 0 ) λ 0.643 ( λ d ce ) 3 / ( n c n s 2 - n c 2 ) ( dB · λ / m ) .
α 0 λ 2.170 ( λ d ce ) 3 / ( n c n s 2 - n c 2 ) ( dB · λ / m ) ,
n AR 2 = n c 2 cos 2 θ + n c sin θ n s 2 - n c 2 cos 2 θ ,
d AR λ 1 4 n AR [ 1 - ( n c n AR ) 2 cos 2 θ ] - 1 / 2 × ( 2 I + 1 ) ,             ( I = 0 , 1 , 2 , ) ,
E y ( x , z ) = - L ( β ) N 2 ( β ) f ( x ; β ) exp ( - j z d β ) d β ,
L λ 5 n c ( d ce λ ) 2 ,
f ( x ; β ) = { A sin { κ c ( x + d ce ) } in core cos ( κ 1 x - ϕ ) in first cladding B sin { κ c ( x - d 1 - d ce / 2 ) } in second cladding
κ c 2 = k 0 2 n c 2 - β 2 ,
κ 1 2 = k 0 2 n 1 2 - β 2 ,
tan ϕ = κ c κ 1 tan ( κ c d ce ) ,
tan ( κ 1 d 1 - ϕ ) = κ c κ 1 tan ( κ c d ce / 2 ) .
κ c = 0.
ϕ 1 κ 1 d ce .
κ 1 d 1 - ϕ - M π 2 κ 1 d ce ( M = 0 , 1 , 2 , ) .
κ 1 2 π n 1 λ [ 1 - ( n c n 1 ) 2 ] - 1 / 2 .
d 1 λ 1 2 n 1 [ 1 - ( n c n 1 ) 2 ] - 1 / 2 [ M + 3 λ 2 π 2 d c n 1 2 - n c 2 ] .
[ m 11 m 12 m 21 m 22 ] = [ 1 - j k 0 d ce / 2 0 1 ] .
1 - R ( 2 λ π d ce ) 2 / ( n 1 2 - n c 2 n s 2 - n c 2 ) ,
tan θ 1 = [ ( n 1 n c ) 2 - 1 ] - 1 / 2 .
α 0 max λ 0.879 ( λ d ce ) 3 / ( n c n s 2 - n c 2 ) ( dB · λ / m ) .
n 0 < n eq < n c f ( x ; β ) = { C 0 exp ( γ 0 x ) in upper cladding cos ( κ c x - ϕ ) in core C 1 sin ( κ 1 x + ϕ 1 ) in first cladding C 2 cos ( κ 2 x + ϕ 2 ) in second cladding C AR sin ( κ AR x + ϕ AR ) in AR layer C s cos ( κ s x + ϕ s ) in substrate
n c < n eq < n AR f ( x ; β ) = { C 0 exp ( γ 0 x ) in upper cladding C c 1 exp ( γ c x ) + C c 2 exp ( γ c x ) in core cos ( κ 1 x - ϕ 1 ) in first cladding C 21 exp ( γ 2 x ) + C 22 exp ( - γ 2 x ) in second cladding C AR cos ( κ AR x + ϕ AR ) in AR layer C s sin ( κ s x + ϕ s ) in substrate
n AR < n eq < n 1 f ( x ; β ) = { C 0 exp ( γ 0 x ) in upper cladding C c 1 exp ( γ c x ) + C c 2 exp ( γ c x ) in core cos ( κ 1 x - ϕ 1 ) in first cladding C 21 exp ( γ 2 x ) + C 22 exp ( - γ 2 x ) in second cladding C AR1 cos ( γ AR x ) + C AR 2 exp ( - γ AR x ) in AR layer C s sin ( κ s x + ϕ s ) in substrate
L ( β ) = β 2 ω μ 0 P - f ( x ; β ) E y ( x , 0 ) d x .
N 2 ( β ) 2 ω μ 0 - f ( x ; β ) f ( x ; β ) d x = P δ ( β - β ) .
N 2 ( β ) = 2 π κ s C s 2 ,

Metrics