Abstract

A new laser-based method was developed for fabrication of microlenses on flat quartz plates. In this method, a CO2 laser is used to heat a quartz surface and induce thermal reactions for source gases of SiH4 and NO. Even as-grown silicon oxide deposits have the spherical thickness distribution required for a lens at the center and this useful area can be further increased by wet etching. Microlenses were checked on a Fizeau interferometer for surface accuracy and aberrations. As a demonstration, a 14-μm thick microlens was used for collimating light from an optical fiber.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Oikawa, K. Iga, T. Sanada, N. Yamamoto, K. Nishizawa, “Array of Distributed-Index Planar Micro-Lenses Prepared from Ion Exchange Technique,” Jpn. J. Appl. Phys. 20, L296–L298 (1981).
    [CrossRef]
  2. M. Oikawa, K. Iga, T. Sanada, “Distributed-Index Planar Microlens Array Prepared from Deep Electromigration,” Electron. Lett. 17, 452–454 (1981).
    [CrossRef]
  3. M. Oikawa, K. Iga, “Distributed-Index Planar Microlens,” Appl. Opt. 21, 1052–1056 (1982).
    [CrossRef] [PubMed]
  4. H. Sugiyama, M. Kato, S. Misawa, K. Iga, “Fabrication of Planar Microlens by Transverse Electromigration Method,” Jpn. J. Appl. Phys. 25, 1959–1960 (1986).
    [CrossRef]
  5. N. F. Borrelli, D. L. Morse, R. H. Bellman, W. L. Morgan, “Photolytic Technique for Producing Microlenses in Photosensitive Glass,” Appl. Opt. 24, 2520–2525 (1985).
    [CrossRef] [PubMed]
  6. N. F. Borrelli, D. L. Morse, “Microlens Arrays Produced by a Photolytic Technique,” Appl. Opt. 27, 476–479 (1988).
    [CrossRef] [PubMed]
  7. K. S. Lee, F. S. Barnes, “Microlenses on the End of Single-Optical Fibers for Laser Applications,” Appl. Opt. 24, mode 3134–3139 (1985).
    [CrossRef] [PubMed]
  8. G. D. Khoe, H. G. Kock, J. A. Luijendijk, G. H. J. van den Brekel, D. Kuppers, “Plasma CVD Prepared SiO2/Si3N4 Graded Index Lenses Integrated in Windows of Laser Diode Packages,” in Technical Digest, Seventh European Conference on Optical Communications (Copenhagen, 1981), paper 7.6-1.
  9. A. Sugimura, Y. Fukuda, M. Hanabusa, “Selective Area Deposition of Silicon-nitride and Silicon-oxide by Laser Chemical Vapor Deposition and Fabrication of Microlenses,” J. Appl. Phys. 62, 3222–3227 (1987).
    [CrossRef]
  10. M. J. Rand, J. F. Roberts, “Silicon Oxynitride Films from the Reaction,” J. Electrochem. Soc.: Solid-State NO-NH3-SiH4 Sci. Technol 120, 446–453 (1973).
  11. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1975) pp. 468–469.
  12. See, for example, M. Hanabusa, “Photoinduced Deposition of Thin Films,” Mater. Sci. Rep. 2, 51–98 (1987).
    [CrossRef]

1988 (1)

1987 (2)

A. Sugimura, Y. Fukuda, M. Hanabusa, “Selective Area Deposition of Silicon-nitride and Silicon-oxide by Laser Chemical Vapor Deposition and Fabrication of Microlenses,” J. Appl. Phys. 62, 3222–3227 (1987).
[CrossRef]

See, for example, M. Hanabusa, “Photoinduced Deposition of Thin Films,” Mater. Sci. Rep. 2, 51–98 (1987).
[CrossRef]

1986 (1)

H. Sugiyama, M. Kato, S. Misawa, K. Iga, “Fabrication of Planar Microlens by Transverse Electromigration Method,” Jpn. J. Appl. Phys. 25, 1959–1960 (1986).
[CrossRef]

1985 (2)

1982 (1)

1981 (2)

M. Oikawa, K. Iga, T. Sanada, N. Yamamoto, K. Nishizawa, “Array of Distributed-Index Planar Micro-Lenses Prepared from Ion Exchange Technique,” Jpn. J. Appl. Phys. 20, L296–L298 (1981).
[CrossRef]

M. Oikawa, K. Iga, T. Sanada, “Distributed-Index Planar Microlens Array Prepared from Deep Electromigration,” Electron. Lett. 17, 452–454 (1981).
[CrossRef]

1973 (1)

M. J. Rand, J. F. Roberts, “Silicon Oxynitride Films from the Reaction,” J. Electrochem. Soc.: Solid-State NO-NH3-SiH4 Sci. Technol 120, 446–453 (1973).

Barnes, F. S.

Bellman, R. H.

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1975) pp. 468–469.

Borrelli, N. F.

Fukuda, Y.

A. Sugimura, Y. Fukuda, M. Hanabusa, “Selective Area Deposition of Silicon-nitride and Silicon-oxide by Laser Chemical Vapor Deposition and Fabrication of Microlenses,” J. Appl. Phys. 62, 3222–3227 (1987).
[CrossRef]

Hanabusa, M.

A. Sugimura, Y. Fukuda, M. Hanabusa, “Selective Area Deposition of Silicon-nitride and Silicon-oxide by Laser Chemical Vapor Deposition and Fabrication of Microlenses,” J. Appl. Phys. 62, 3222–3227 (1987).
[CrossRef]

See, for example, M. Hanabusa, “Photoinduced Deposition of Thin Films,” Mater. Sci. Rep. 2, 51–98 (1987).
[CrossRef]

Iga, K.

H. Sugiyama, M. Kato, S. Misawa, K. Iga, “Fabrication of Planar Microlens by Transverse Electromigration Method,” Jpn. J. Appl. Phys. 25, 1959–1960 (1986).
[CrossRef]

M. Oikawa, K. Iga, “Distributed-Index Planar Microlens,” Appl. Opt. 21, 1052–1056 (1982).
[CrossRef] [PubMed]

M. Oikawa, K. Iga, T. Sanada, N. Yamamoto, K. Nishizawa, “Array of Distributed-Index Planar Micro-Lenses Prepared from Ion Exchange Technique,” Jpn. J. Appl. Phys. 20, L296–L298 (1981).
[CrossRef]

M. Oikawa, K. Iga, T. Sanada, “Distributed-Index Planar Microlens Array Prepared from Deep Electromigration,” Electron. Lett. 17, 452–454 (1981).
[CrossRef]

Kato, M.

H. Sugiyama, M. Kato, S. Misawa, K. Iga, “Fabrication of Planar Microlens by Transverse Electromigration Method,” Jpn. J. Appl. Phys. 25, 1959–1960 (1986).
[CrossRef]

Khoe, G. D.

G. D. Khoe, H. G. Kock, J. A. Luijendijk, G. H. J. van den Brekel, D. Kuppers, “Plasma CVD Prepared SiO2/Si3N4 Graded Index Lenses Integrated in Windows of Laser Diode Packages,” in Technical Digest, Seventh European Conference on Optical Communications (Copenhagen, 1981), paper 7.6-1.

Kock, H. G.

G. D. Khoe, H. G. Kock, J. A. Luijendijk, G. H. J. van den Brekel, D. Kuppers, “Plasma CVD Prepared SiO2/Si3N4 Graded Index Lenses Integrated in Windows of Laser Diode Packages,” in Technical Digest, Seventh European Conference on Optical Communications (Copenhagen, 1981), paper 7.6-1.

Kuppers, D.

G. D. Khoe, H. G. Kock, J. A. Luijendijk, G. H. J. van den Brekel, D. Kuppers, “Plasma CVD Prepared SiO2/Si3N4 Graded Index Lenses Integrated in Windows of Laser Diode Packages,” in Technical Digest, Seventh European Conference on Optical Communications (Copenhagen, 1981), paper 7.6-1.

Lee, K. S.

Luijendijk, J. A.

G. D. Khoe, H. G. Kock, J. A. Luijendijk, G. H. J. van den Brekel, D. Kuppers, “Plasma CVD Prepared SiO2/Si3N4 Graded Index Lenses Integrated in Windows of Laser Diode Packages,” in Technical Digest, Seventh European Conference on Optical Communications (Copenhagen, 1981), paper 7.6-1.

Misawa, S.

H. Sugiyama, M. Kato, S. Misawa, K. Iga, “Fabrication of Planar Microlens by Transverse Electromigration Method,” Jpn. J. Appl. Phys. 25, 1959–1960 (1986).
[CrossRef]

Morgan, W. L.

Morse, D. L.

Nishizawa, K.

M. Oikawa, K. Iga, T. Sanada, N. Yamamoto, K. Nishizawa, “Array of Distributed-Index Planar Micro-Lenses Prepared from Ion Exchange Technique,” Jpn. J. Appl. Phys. 20, L296–L298 (1981).
[CrossRef]

Oikawa, M.

M. Oikawa, K. Iga, “Distributed-Index Planar Microlens,” Appl. Opt. 21, 1052–1056 (1982).
[CrossRef] [PubMed]

M. Oikawa, K. Iga, T. Sanada, N. Yamamoto, K. Nishizawa, “Array of Distributed-Index Planar Micro-Lenses Prepared from Ion Exchange Technique,” Jpn. J. Appl. Phys. 20, L296–L298 (1981).
[CrossRef]

M. Oikawa, K. Iga, T. Sanada, “Distributed-Index Planar Microlens Array Prepared from Deep Electromigration,” Electron. Lett. 17, 452–454 (1981).
[CrossRef]

Rand, M. J.

M. J. Rand, J. F. Roberts, “Silicon Oxynitride Films from the Reaction,” J. Electrochem. Soc.: Solid-State NO-NH3-SiH4 Sci. Technol 120, 446–453 (1973).

Roberts, J. F.

M. J. Rand, J. F. Roberts, “Silicon Oxynitride Films from the Reaction,” J. Electrochem. Soc.: Solid-State NO-NH3-SiH4 Sci. Technol 120, 446–453 (1973).

Sanada, T.

M. Oikawa, K. Iga, T. Sanada, N. Yamamoto, K. Nishizawa, “Array of Distributed-Index Planar Micro-Lenses Prepared from Ion Exchange Technique,” Jpn. J. Appl. Phys. 20, L296–L298 (1981).
[CrossRef]

M. Oikawa, K. Iga, T. Sanada, “Distributed-Index Planar Microlens Array Prepared from Deep Electromigration,” Electron. Lett. 17, 452–454 (1981).
[CrossRef]

Sugimura, A.

A. Sugimura, Y. Fukuda, M. Hanabusa, “Selective Area Deposition of Silicon-nitride and Silicon-oxide by Laser Chemical Vapor Deposition and Fabrication of Microlenses,” J. Appl. Phys. 62, 3222–3227 (1987).
[CrossRef]

Sugiyama, H.

H. Sugiyama, M. Kato, S. Misawa, K. Iga, “Fabrication of Planar Microlens by Transverse Electromigration Method,” Jpn. J. Appl. Phys. 25, 1959–1960 (1986).
[CrossRef]

van den Brekel, G. H. J.

G. D. Khoe, H. G. Kock, J. A. Luijendijk, G. H. J. van den Brekel, D. Kuppers, “Plasma CVD Prepared SiO2/Si3N4 Graded Index Lenses Integrated in Windows of Laser Diode Packages,” in Technical Digest, Seventh European Conference on Optical Communications (Copenhagen, 1981), paper 7.6-1.

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1975) pp. 468–469.

Yamamoto, N.

M. Oikawa, K. Iga, T. Sanada, N. Yamamoto, K. Nishizawa, “Array of Distributed-Index Planar Micro-Lenses Prepared from Ion Exchange Technique,” Jpn. J. Appl. Phys. 20, L296–L298 (1981).
[CrossRef]

Appl. Opt. (4)

Electron. Lett. (1)

M. Oikawa, K. Iga, T. Sanada, “Distributed-Index Planar Microlens Array Prepared from Deep Electromigration,” Electron. Lett. 17, 452–454 (1981).
[CrossRef]

J. Appl. Phys. (1)

A. Sugimura, Y. Fukuda, M. Hanabusa, “Selective Area Deposition of Silicon-nitride and Silicon-oxide by Laser Chemical Vapor Deposition and Fabrication of Microlenses,” J. Appl. Phys. 62, 3222–3227 (1987).
[CrossRef]

J. Electrochem. Soc.: Solid-State NO-NH3-SiH4 Sci. Technol (1)

M. J. Rand, J. F. Roberts, “Silicon Oxynitride Films from the Reaction,” J. Electrochem. Soc.: Solid-State NO-NH3-SiH4 Sci. Technol 120, 446–453 (1973).

Jpn. J. Appl. Phys. (2)

M. Oikawa, K. Iga, T. Sanada, N. Yamamoto, K. Nishizawa, “Array of Distributed-Index Planar Micro-Lenses Prepared from Ion Exchange Technique,” Jpn. J. Appl. Phys. 20, L296–L298 (1981).
[CrossRef]

H. Sugiyama, M. Kato, S. Misawa, K. Iga, “Fabrication of Planar Microlens by Transverse Electromigration Method,” Jpn. J. Appl. Phys. 25, 1959–1960 (1986).
[CrossRef]

Mater. Sci. Rep. (1)

See, for example, M. Hanabusa, “Photoinduced Deposition of Thin Films,” Mater. Sci. Rep. 2, 51–98 (1987).
[CrossRef]

Other (2)

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1975) pp. 468–469.

G. D. Khoe, H. G. Kock, J. A. Luijendijk, G. H. J. van den Brekel, D. Kuppers, “Plasma CVD Prepared SiO2/Si3N4 Graded Index Lenses Integrated in Windows of Laser Diode Packages,” in Technical Digest, Seventh European Conference on Optical Communications (Copenhagen, 1981), paper 7.6-1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup used to fabricate microlenses.

Fig. 2
Fig. 2

Thickness distribution of silicon oxide deposits on the quartz plate: (a) as-grown; (b) after 2-min etching; and (c) after 3-min etching.

Fig. 3
Fig. 3

The spatial dependence of etch rate with the distance measured from the center of the deposit.

Fig. 4
Fig. 4

A microlens produced on quartz coated with a uniform silicon nitride film, showing an improved surface profile as a whole by leaving the substrate intact after etching.

Fig. 5
Fig. 5

Interference fringe pattern showing the surface accuracy of the microlens (a) and its graphic display (b).

Fig. 6
Fig. 6

Wavefront distortion caused by aberrations of the same microlens as in Fig. 5.

Fig. 7
Fig. 7

A thick microlens used to collimate light from an optical fiber.

Metrics